Two Super-Earths in the 3:2 MMR around KOI-1599
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ABSTRACT

We validate the planetary origin of the KOI-1599 transit time variations (TTVs) with sta-
tistical and dynamical tests. We re-analysed KEPLER Q1-Q17 light-curves of the star, and
we independently derived the TTVs. They appear as strongly anti-correlated, suggestive of
two mutually interacting planets. We found similar radii of the candidates, 1.9 £ 0.2Rg, for
the inner KOI-1599.02, and 1.9 4+ 0.3Rg, for the outer KOI-1599.01. The standard MCMC
TTV analysis constrains the planet masses safely below the dynamical instability limit of
~ 3M,,,. The best-fitting MCMC model yields (9.0 £0.3)Mg, and (4.6 +0.3) Mg, for the
inner and the outer planet, respectively. The planets are trapped in 3:2 mean motion resonance
(MMR) with anti-aligned apsides (A® = 180°) at low-eccentric (e ~ 0.01) orbits. However,
we found that the TTV mass determination depends on eccentricity priors with the dispersion
in the (0.01,0.05) range. They permit a second family of TTV models with smaller masses
of ~ 7Mg, and ~ 3.6 Mg, respectively, exhibiting two modes of AW = 0°,180° librations.
The 3:2 MMR is dynamically robust and persists for both modes. In order to resolve the mass
duality, we re-analysed the TTV data with a quasi-analytic model of resonant TTV signals.
This model favours the smaller masses. We also reproduced this model with simulating the

migration capture of the system into the 3:2 MMR.
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1 INTRODUCTION

The KEPLER mission (Borucki et al. 2011) discovered hun-
dreds of extra-solar multiple planetary systems (https://
exoplanetarchive.ipac.caltech.edu/). The distribution of
the period-ratio in the KEPLER sample (Lissauer et al. 2011; Fab-
rycky et al. 2014; Delisle & Laskar 2014) shows a paucity of sys-
tems near to first-order mean motion resonances (MMRs), with a
significant peak close to the 3:2 MMR. Such features of the period-
ratio distribution may be related to the formation history and dy-
namic evolution of multiple planet systems (e.g., Lithwick & Wu
2012; Batygin & Morbidelli 2013; Papaloizou 2015). It is there-
fore critical to determine whether a multiple planetary system is
dynamically resonant or only close to a strictly resonant configura-
tion (e.g., Petrovich et al. 2013; Goldreich & Schlichting 2014).

A crucial data source regarding the multiple KEPLER planet
configurations are the TTV measurements published in recent cat-
alogues by Rowe et al. (2015) and Holczer et al. (2016) (further-
more, H16). The data span the Q1-Q16 quarters of the KEPLER
light-curves (LCs). Through inspecting these measurements, we se-
lected KOI-1599 with two putative planetary companions, with the
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inner candidate marked as a possible planet and the outer one not
yet examined in the NASA Exoplanet Archive. The TTVs of KOI-
1599 exhibit an anti-correlated sinusoidal trend, indicative of two
gravitationally interacting objects (e.g., Steffen et al. 2012; Steffen
& Hwang 2015). Our primary motivation for investigating this pu-
tative 2-planet configuration is the proximity of their orbital periods
to the 3:2 MMR. We did not find any studies aiming to characterise
this interesting and likely resonant system.

Since the star is dim (V ~ 15 mag), it would be a difficult tar-
get for a spectroscopic follow-up, and we aim to constrain masses
of the planetary companions with the TTV orbital model (e.g. Agol
et al. 2005; Holman & et al. 2010). Recently, Baranec et al. (2016)
imaged ~ 1000 dim KEPLER stars unsuitable for the spectroscopic
follow-up. They detected two nearby dim field stars, yet with a sub-
stantial angular separation of ~ 3 arcsec from KOI-1599, which
may dismiss the blend effect. We aim to verify this furthermore on
the dynamical grounds, re-compute the planet-to-star radius-ratio,
and the density estimates for the candidate planets.

In this work, we follow Holman & et al. (2010); Nesvorny
et al. (2013); MacDonald et al. (2016), as well as Panichi et al.
(2018), regarding the dynamical photometry method. In Sect. 2, we
re-analysed the whole Q1-Q17 DR-25 KEPLER LCs of KOI-1599,
and we update the TTVs measurements. In Sect. 3, we validated
the two transiting objects as planets. In Sect. 4, we derive the or-
bital model and masses of the 2-planet configuration. In Sect. 5, we
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characterise the 3:2 MMR resonant architecture. In Sect. 6 we show
that the best-fitting configurations may be interpreted as the natural
outcome of planetary migration. We discuss the internal composi-
tions of the planets in Sect. 7. We present our conclusions in Sect. 8.
Supplementary Material (SM) with source TTV data is presented
on-line.

2 THE LIGHT-CURVE ANALYSIS AND TTVS

Aiming to validate the KOI-1599 planets, we used the KEPLER
photometric data only. We re-analysed the corrected, de-trended
LC-INIT light-curves (LCs) from the DR-25 KEPLER release,
spanning the whole Q1-Q17 quarters, also in order to verify and,
possibly, refine the previous TTVs measurements. To avoid con-
fusion, the inner planet KOI-1599.02 has index “1” and the outer
planet KOI-1599.01 is labeled with “2”, respectively. With the box-
least-squares (BLS) algorithm (Kovacs et al. 2002), we searched
for periodic signals in the LCs. The two transiting objects are ap-
parently close to the 3:2 MMR, thus their mid-transit times may be
significantly shifted from the linear ephemeris.

We followed Panichi et al. (2018), to extract the TTVs from
the LC-INIT LCs. We split the LCs in fragments and we selected a
narrow window (0.5 days) at multiples of the two periods ob-
tained with the BLS search. Each of them should contain only
one transit-like signature. Once we re-normalised the out-of-transit
parts of each fragments, we superimposed them in order to obtain
a folded LC for both planets. We used the EXONAILER package
of Espinoza et al. (2016) for preliminary estimations of the planet-
to-star radius-ratio (p) and the orbital inclination (/). We interpo-
lated the quadratic limb-darkening coefficients based on data in the
NASA archive. We kept the photometric noise G,, fixed and we
estimated it from the off-transit fragments of the LCs. After fix-
ing these parameters, we fitted mid-transit moments (7) for each
of the LC fragments. We applied this preliminary list of mid-transit
times for re-folding each of the fragments, and we iterated the same
procedure until no significant differences in the best-fitting param-
eters are present. The inferred parameters and related uncertainties
are listed in Tab. 1. In this way, we controlled the derived TTVs,
radii R;, (1.94+0.2) and (1.9 +0.3) Earth radii, as well as orbital
inclinations /;. The system appears as almost co-planar, since the
inner planet has I} = 88.60 & 0.06 [deg], while for the outer planet
I) =89.78 £0.1 [deg]. We checked that star mass and radius from
(Rowe et al. 2015) are in agreement, within the 16 uncertainties,
when compared with recent estimates in Johnson et al. (2017) and
Sanchis-Ojeda et al. (2012).

We derived the median values of the photometric parame-
ters and their uncertainties with the Markov Chain Monte Carlo
(MCMC) affine sampler, developed in the EMCEE package by
Foreman-Mackey et al. (2013). We reported the mid-transit times
and TTV measurements in the SM on-line.

3 VALIDATION OF THE PLANETARY TTV ORIGIN

We applied tests originally proposed by the KEPLER team to val-
idate the majority of candidate planets in multiple systems (e.g.
Lissauer et al. 2011; Steffen et al. 2012; Rowe et al. 2014).

The anti-correlation (cross-correlation) of the TTVs can be
used to confirm that two objects orbit the same star (Steffen et al.
2012) and their observed anti-correlated TTV signals cannot be a
random noise. This method relies on the Monte Carlo bootstrap

Table 1. Parameters inferred from the analysis of the folded light-curve
and their uncertainties. The mid-transit time 7p,;q. and mean period Ppean
from linear ephemeris, planet-to-star radii ratio p, semi-major axis in stellar
units a/R,, and we report the limb darkening coefficients ¢1,g>. For all
parameters, we estimate the uncertainties as the 16-th, and 84-th percentile
of the MCMC samples.

Planet KOI-1599.02 KOI-1599.01
Prean [d] 13.6164 +0.0001  20.408 + 0.0004
Tid. [BID-2454900] 60.32 £ 0.01 52.73 £0.02
p 0.0181 4+ 0.0003  0.0180 + 0.0004
a/R. 24.89 £ 0.11 32.63 £0.42
I[deg] 88.60+0.06 89.78+0.16
q1 0.2602 (fixed)

q2 0.4096 (fixed)

analysis. We fitted a sinusoidal signal with a fixed modulation pe-
riod to the TTV series of each planet with the Levenberg-Marquardt
algorithm (Press et al. 1986). For each of the sampled periods, the
cross-correlation statistics = (Steffen et al. 2012) measures the fit
quality — the larger the E, the better the quality. Figure 1 shows
& for the KOI-1599 TTV signals, as a function of the modulation
period. Our new TTVs dataset exhibits a peak at a position similar
to the one in the H16 data, but it seems to have even larger signifi-
cance.

The next step consists of the Monte Carlo bootstrap analysis
(e.g., Press et al. 1986). We tested 5 x 10* synthetic TTV datasets
obtained by random shuffling of the original TTVs, with their un-
certainties, and the mid-transit times. As for the real TTV data, we
fitted each of the randomly generated datasets with the sine func-
tion, and the maximum value of its E is recorded. We illustrate
the results in Fig. 1 (middle panel). The False Alarm Probability
(FAP) is defined as the ratio of synthetic systems with E larger than
that of the observed system to the total number of samples (here,
5% 10%). The histogram indicates that unlikely the sinusoidal TTVs
are artefacts. The FAP is smaller than 10~ adopted by Steffen et al.
(2012) for validating other KEPLER Objects of Interest (KOIs). We
conclude that the KOI-1599 data passes the TTV anti-correlation
test.

As a second validation test, we used the dynamical stability
constraints. We note that this experiment was not based on the
TTVs measurements, rather than on canonical information regard-
ing the orbital periods of transiting objects inferred from the LCs.

In order to conduct the test, we changed the masses, m; and
my, of the two putative transiting objects in a two—dimensional grid
of 512 x 512 points. At each point, we constructed a number of
synthetic configurations, by fixing their orbital periods (and semi-
major axes) in accordance with the mean photometric periods. The
mean anomalies and arguments of periastrons are random in the
[0,360°] range, and the eccentricities are randomly sampled from
[0,0.1]. In order to check the stability of these synthetic systems,
we used the Lyapunov-based fast indicator MEGNO (Cincotta &
Sim6 2000; Gozdziewski et al. 2008).

We present the results in Fig. 1 for the probability of picking
up a stable system in the (m,my)-plane, for 100 sampled config-
urations with a fixed pair of masses. Clearly, stable systems are
possible unless the masses are larger than 2-3 myyp. Beyond this
limit, the probability of guessing a stable configuration sharply de-
creases. Moreover, the masses in stable systems are well below the
planetary threshold of ~ 14 myy, (e.g., Spiegel et al. 2011).
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Figure 1. Left: Cross-correlation in terms of the E statistics, for our new TTV data (blue line) and H16 dataset (red line), respectively. The modulation period’s
peak of ~ 1100 d exceeds other peaks. Middle: Monte Carlo bootstrap analysis of KOI-1599. The maximum of Z for the observed system (red) is much larger
than for any of the synthetic configurations (blue). Right: the probability of stable systems in the (m;,m;)-plane. We used the Mean Exponential Growth factor
of Nearby Orbits (MEGNO) to compute the dynamical stability of each initial conditions. See Sect. 3 for details.

4 THE BEST-FITTING TTV MODELS

We applied the same orbital model and the TTV model optimisation
as in our earlier papers (e.g. Gozdziewski et al. 2016). We assumed
a co-planar system, and the model parameters p = {m;,P;,x; =
ejcos®;,y; = e;sin®;, T; } for i = 1,2, where P;, ¢;, ®; and T; stand
for the orbital period, eccentricity, longitude of pericenter and the
moment of the first transit, respectively, w.r.t. the initial epoch of
Ty = BKID — 139 d.

We performed a preliminary optimisation of the likelihood
function L(p) with the evolutionary algorithms (GEA), but, as an-
ticipated, constraining the eccentricities is difficult due to the mass-
eccentricity degeneration (e.g., Hadden & Lithwick 2014; Deck &
Agol 2015; Jontof-Hutter et al. 2016). Therefore, we restrict ec-
centricities of the two planets in the GEA search, in order to avoid
the “over-fitting” of the TTVs (e.g., Migaszewski et al. 2017; Mi-
gaszewski & Gozdziewski 2018; MacDonald et al. 2016). The limit
e; < 0.05 (i = 1,2) is typical for Earth-like multiple KEPLER plan-
ets near to or involved in MMR (e.g., Kane et al. 2012; Kipping
2014; Xie et al. 2016; Jontof-Hutter et al. 2016; Shabram et al.
2016).

In Fig. 2, we project the best-fitting GEA solutions yielding
%% < 1.15 on the (e; + 3, A®)-plane of the osculating elements.
For these solutions, we also computed the amplitude of the sec-
ular angle AW = ®, — ®;, as well as of the critical angles of the
3:2 MMR, ¢3;2A’1 =2\ — 3\ + Oy, 0300 = 2\ —3A, +®,, where
A; is the mean longitude of the i — th planet, ®; its longitude of
periastron, and the indexes 1,2 are for the inner and outer planet,
respectively.

The distribution of 2.5 x 10° GEA models illustrated in Fig. 2
clusters around A® ~ 180°, and is qualitatively different from that
one of Kepler-29, for which most of the eccentricity-unconstrained
GEA models are characterised by A® ~ 0° (Migaszewski et al.
2017). For the set of models illustrated in Fig. 2, we calculated
the amplitude of the critical and secular angles for a fixed inte-
gration time equal to 1000 yrs, equivalent to ~ 2 x 10° dynamical
(outer) periods. We selected four representative solutions marked
in Fig. 2. We listed their Keplerian osculating orbital elements in
Tab. 2. The GEA-I solution in Tab. 2 represents low-eccentricity
anti-aligned configurations, the GEA-II model is an example of
moderate-eccentricity, aligned (A® = 0°) systems. The GEA-III
model is a representative configuration for anti-aligned solutions
with moderate eccentricity, while the GEA-IV model is a repre-
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Figure 2. Distribution in the (e; + e2,A®)-plane of the statistics obtained
with the GEA sampling. We collected 2.5 x 10° best-fitting solutions with
%% < 1.15. The solutions with critical angles librating are shown as gray
dots, and solutions with circulating resonant angles are marked with red
dots. The integration time for each solution is equal to 1000 yrs. Four repre-
sentative solutions selected and listed in Tab. 2 are marked with blue circles.

sentative of the solutions with eccentricities close to the upper limit
imposed in the GEA search. The anti-aligned configurations are the
most frequent solutions inferred from the GEA search. We found
that almost all solutions exhibit one or two critical angles librating,
while only 172 models (marked in red) exhibit circulating criti-
cal angles. We distinguish between aligned models (A® ~ 0°) for
which only one critical angle librate, while both angles librate in
anti-aligned solutions (A® ~ 180°). Remarkably, such behaviour is
independent of eccentricities and masses. Moreover, the circulating
critical angles remain highly coherent. Furthermore, we found that
such coherent circulations may be related to the proximity of the
solutions to the separatrices of the 3:2 MMR, as will be demon-
strated in Sect. 5. Therefore, the GEA experiment results indicate
that the system can be considered as resonant in statistical sense.
Due to the short observational window, it is not possible to
constrain the architecture of the system by inspecting the GEA
models statistics. However, having the best-fitting GEA solutions
as the initial guess, we used the MCMC sampling for characteris-
ing these solutions through imposing Bayesian priors on the TTV
model parameters. In particular, we set Gaussian priors A (u, 6) for
the (x;,y;)-variables with y; = 0 and the same Oy, y, for both plan-
ets. In order to assess proper values of these priors, we performed
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Table 2. Keplerian osculating orbital elements and masses of four representative solutions for KOI-1599 derived by the GEA optimisation algorithm. We also
report the best-fitting period and initial mid-transit time for each solution. The reference epoch is Barycentric Kepler Julian Day (BKJD) — 139 days. The

mass of the KOI-1599 star is 1.02Mg (Rowe et al. 2015).

Model/ GEA I (low e, A® >~ 1) GEA II (Iow e, A®w ~ 0) GEA III (moderate e, A® ~ T) GEA IV (high e, A® ~ T)

Planet KOI-1599.02 KOI-1599.01 KOI-1599.02 KOI-1599.01 KOI-1599.02 KOI-1599.01 KOI-1599.02 KOI-1599.01
P[d] 13.6094 20.4386 13.6099 20.4376 13.6099 20.4361 13.6100 20.4355
T[d] 74.011 72.961 74.009 72.951 74.012 72.952 74.012 72.953
mp [Mg)] 8.3 4.3 7.6 3.7 7.0 3.6 6.8 35
alau] 0.11230 0.14727 0.11230 0.14726 0.11230 0.14725 0.11230 0.14725
e 0.0067 0.0177 0.0062 0.0444 0.0250 0.0500 0.050 0.050
o[deg] 40.6 -139.9 -177.9 176.7 -24.3 155.6 -31.2 148.8
M [deg] 176.8 314 34.0 71.4 -116.3 92.3 -107.2 99.4

the MCMC sampling for Gy, ,, € [0.001,0.12], with small steps,
following a similar strategy as in Migaszewski & Gozdziewski
(2018). The priors were set uniform for all other parameters. We
iterated 1024 emcee walkers around selected GEA models for up
to 256,000 samples each, aiming to keep the acceptance rate be-
tween 0.2 and 0.5.

In Fig. 3, we show the posterior distributions in the (m,my)-
and (0, A®)-plane, AW = ®, — B, for two representative Gy, y, =
0.0066 and 0.12, respectively. For eccentricity priors smaller than
the critical one, Gg’yi ~ (.03 (tentatively), the posterior is single-
modal (the left column of Fig. 3), with A® ~ 180°. We found
the posterior more and more asymmetric in A® for Gy, y, > G)(;:_yi,
and with two clear local extrema, A® ~ 180°,0° for oy, y, > 0.06.
Close to thyi, the A® = 180° mode bifurcates, and a second mode
A® = 0° (aligned orbits) emerges. As the best-fitting TTV model,
we report in Tab. 3 a low-eccentric (¢; ~ 0.01), Aw = 180° solu-
tion for oy, y, = 0.0033. It yields similarly small %3 ~ 1.1 as the
best GEA models, x2 ~ 1, close to a local minimum, when com-
pared with models for 6y, ,, = 0.001 (32 = 1.22) and Gy, 5, = 0.0066

(O =1.27).

Plots in the right column of Fig. 3 illustrate the median values
of eccentricities and masses derived from the posterior samples,
for a number of runs with o, y, € [0.001,0.12]. There is a strong
correlation of the median eccentricity with the priors, while mass
estimates seem to be clustered, yet in two different regions, relative
to 6 |, ~0.03. Beyond that value, (x;,x;) and/or (y;,y;) are corre-
lated, and A® = 180°,0° modes appear clearly for 6y, y, > 0.06, a
value likely dependent on the MCMC sampling strategy.

This experiment shows that it is not possible to distinguish be-
tween solutions exhibiting the two A® modes and different eccen-
tricities with only TTV observations. Also, the mass-eccentricity
degeneracy (e.g., Hadden & Lithwick 2014; Jontof-Hutter et al.
2016) cannot be fully removed with a “reasonable” selection of
the eccentricity priors. The masses and eccentricities are globally
weakly constrained, mostly due to the two-modal Am = 0°, 180°
posterior. Additional constraints, like a particular type of peri-
odic configurations (Migaszewski & Gozdziewski 2018), or flow-
ing from the migration history of the system, could be helpful for
resolving this issue. Indeed, as described in detail in Sect. 6, for rea-
sonable disk decay and migration time-scales (T4, T, ), we obtain an
agreement between the numerical simulations and our best-fitting
solutions, having synthetic systems with A® = 180° and moderate
eccentricities.

Table 3. The TTV and light-curve model parameters and their uncertain-
ties from the MCMC sampling. For the TTV model, the eccentricity priors
Gy, = 0.0033, resulting in A® = 180° and %3 = 1.1. For all parameters, we
estimate the uncertainties as the 16—th, and 84—th percentile of the samples.
The Ty epoch is BKID—139 days. The star mass is m, = 1.02M, its radius
R, =0.972 R, (Rowe et al. 2015). We inferred the orbital elements a, e, ®
and M (the mean anomaly at the epoch) from the primary parameters.

Planet KOI-1599.02 KOI-1599.01
P[d] 13.6088 +0.0006  20.4415 £ 0.0013
X =ecos® 0.007 £ 0.003 -0.009 £ 0.003
y=esin® 0.009 £ 0.003 -0.011 £ 0.003
T[d] 74.012 £ 0.006 72.946 £+ 0.008
mass m [Mg] 9.0+03 46+0.3
alau] 0.112293 0.147280
e 0.0114 0.0140
® [deg] 49.951 230.175
M [deg] 167.660 22.141
R[Rq) 1.9+0.2 1.9+0.3

5 THE 3:2 MMR DYNAMICS

Although both the GEA and MCMC-sampling experiments make it
not possible to constrain eccentricities without additional assump-
tions, a striking feature of the TTV models is their clustering in the
anti-aligned libration mode A® = 180°. This feature is expected
as a natural outcome of inward and convergent migration of two-
planet systems (Lee & Peale 2002; Batygin & Morbidelli 2013).
Combinations of low—moderate eccentricity and aligned—anti-
aligned configurations, which fit the TTV observations are also pos-
sible. Also the best-fitting, low %2 ~ 1 systems exhibit period ratios
close to 3:2. In order to assess whether these systems are dynami-
cally resonant, in spite of possible large-amplitude libration of the
critical angles, or only their coherence (such as shown in Fig. 4), we
performed additional numerical experiments regarding four classes
of configurations, illustrated in Fig. 2 and listed in Tab. 2.

A clear libration of the critical angles may not be the deci-
sive factor for identifying the MMR dynamics (e.g., Migaszewski
et al. 2017; Petrovich et al. 2013; Delisle et al. 2012; Henrard &
Lamaitre 1983). Here, we follow the strictly dynamical understand-
ing of the resonance (MMR), as the 3:2 commensurability region
in the parameter space, in which the proper (fundamental) frequen-
cies are closely commensurate and dynamically bordered by sepa-
ratrices (boundaries between different modes of orbital evolution).
The presence of separatrices in multi-dimensional planetary sys-
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Figure 3. Two—dimensional projections of the MCMC-derived posterior: the left column is for the (mj,m2)- and (2, A®)-plane, where AB = @, — O],
respectively for G, ,, = 0.0066, representative of a single AG = 180° mode, and the middle column is for G,; ,,=0.12, with two-modal A® = 180°,0° posterior.
Contours illustrate the 14—, 50—, 86— and 99.9—th percentile of the posterior samples. The right column is for the median values of eccentricities and masses
derived as medians of the posterior samples, for different eccentricity priors ¢ = Gy, y,. Their formal uncertainties are marked with cross-hairs. We distinguish
between clear single-mode A® = 180° solutions yielding X% ~ 1.1 (red symbols) and other models with asymmetric or dual-mode posterior in A® (blue

symbols).

tems usually leads to zones of chaotic motions. In order to detect
such structures in the orbital elements space, we computed dynam-
ical maps in terms of the Maximal Lyapunov Characteristic Ex-
ponent (MLCE) expressed by the MEGNO indicator (Cincotta &
Simé6 2000). We also computed the proper mean motions n;, i = 1,2
(fundamental frequencies associated with the orbital periods) and
their ratio (f2/f1 = na/ny).

5.1 Numerical mapping of the 3:2 MMR

A proper parametrization of the dynamical maps is required for
detecting the resonance structure. Besides the common (a;,e;)—
representation, which crosses all MMRs (Laskar & Robutel 2001),
we considered the so called representative plane of initial condi-
tions (Michtchenko & Ferraz-Mello 2001; Callegari et al. 2006).
The equations of motion of the system are governed by the Hamil-
tonian expressed in Poincaré coordinates (e.g., Michtchenko &
Ferraz-Mello 2001),

2 a .
H=Y (L_yzﬁz)_kzm+p1 2
S \2Bi Iril ri—r]  m

where y; = k?(my +m;), B; = k*m,m; /u;. Besides the total energy
integral #, the total angular momentum C = G| + G is preserved,
where G; = Ljy/1— el-z and L; = B;\/ma;. Moreover, the system
Eq. 1 averaged near a particular MMR (p + ¢)/p, where p,q are
integers (here p = 2, ¢ = 1), exhibits a particular integral K = (p+

q)Ly + pL; that bounds variability of semi-major axes in resonant
motion.

The C and K integrals depend on four elements e, es,aq,a,
and if their values are fixed, two linear equations may be solved
against the two remaining variables. Since the resonant and non-
resonant dynamics are governed by librations of the critical angles
¢3.2,1 and 03.2> around 0° or 180°, or circulations, still involv-
ing these two critical values, the structure of the phase space re-
stricted to the same C and K levels may be illustrated in a plane of
eccentricities X(e1,ep). This plane is composed of four quadrants
with ¢1,¢; fixed at 0° or 180°, encoded by variables x = e} cos @
and y = e; cos . Here, we fix @1 = 0°, M = 0°, and then the re-
maining angles are (@ = 0°, M = 0°), (@ = 180°, M, = 180°),
(@ = 0°,9, = 180°), and (B, = 180°, M, = 0°), respectively.
These pairs of angles define quadrants I, II, III and IV of the repre-
sentative plane X.

We derived the proper mean motions with the frequency
modified Fourier transform (Frequency Modified Fourier Trans-
form aka Numerical Analysis of Fundamental Frequencies, NAFF,
Laskar 1990, 1993; éidlichovsk)’f & Nesvorny 1996) of the time
series {a;(f;) exp[iy;(fx)]}, where y; are appropriate angles form-
ing the conjugate action-angle pairs with the osculating semi-major
axes a;(t) (equivalent to rescaled actions L;), sampled at discrete
moments f, k = 1,2,3,...,2K (here K = 18), inferred from the
Poincaré coordinates (e.g., Morbidelli 2002; GoZdziewski et al.
2008). As the conjugate angles, we may choose the mean longi-
tudes y; = A;(t) = M;(t) +®;(¢) or the mean anomalies y; = M;(t).
The meaning of the NAFF-derived fundamental frequencies #; is
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then subtly different. In the y; = A;(¢) settings, the proper frequen-
cies n; are related to the inertial frame, while for y; = 9;(¢), they
represent the orbital motion in particular rotating reference frames
related to the rotations of the longitudes of pericenter of each orbit.
If the orbital configuration of both planets is periodic, as explained
below, then their apsides rotate with the same frequency, thus there
is a common reference frame corresponding to the rotation of the
planetary system as a whole.

We found the conjugate angles distinction as important for
detecting regions close to the periodic orbits associated with the
3:2 MMR, or rather the 3:2 commensurability. The periodic orbits,
meaning a repetitive, relative configuration of planets in the rotating
reference frame with one of the planets, are associated with centers
of the mean motion resonances (Hadjidemetriou 2006). These so-
Iutions, when related to symmetric periodic orbits, may be charac-
terised by AW = 0°,180° and ¢3. 1 = 0°,180° in the averaged sys-
tem (also, Voyatzis 2008) or low-amplitude librations around these
values in the original (full) system. Regarding the 3:2 MMR, these
conditions correspond to a constant value of 2M; —3M, ~ 0°,180°
for the periodic orbits. Therefore, by using the NAFF we may check
whether fi/f> ~ 3/2 in selected orbital parameter planes, thus de-
tecting the regions associated with the resonant periodic orbits, be-
sides illustrating the width and structure of the resonance.

5.2 The 3:2 MMR structure for selected models

In the top row of Fig. 4, we over-plotted the observed TTVs for
both planets and synthetic TTV signals obtained from the best-
fitting MCMC solution (Tab. 3). In the middle row, we show two
dynamical maps in the (a;,e;)—plane for this model illustrating the
3:2 commensurability region. The left-hand map shows a deviation
of the proper mean motions ratio relative to the exact 3:2 MMR
value, computed by using the mean longitudes (from herein, A-
NAFF). In this map, the 3:2 commensurability region may be in-
dicated by small values of |fi/f> —3/2|. We obtained the right-
hand map with the FMFT analysis of time series involving the
mean anomalies (M -NAFF). In this plot, the family of symmet-
ric periodic orbits is associated with the 3:2 MMR and close so-
lutions appear as dark-blue and dark regions in the (aj,e;)—plane.
Note that this plane is different from the one presented in the left
panel. In the black regions in this map, the f»/f; deviation from
3/2 may be as small as 10~°. We note that due to a complex pro-
jection of the multi-dimensional elements space onto the selected
two—dimensional plane, the family of periodic orbits generally does
not appear as a simple curve or an isolated region. We choose the
(a1,ez)-plane after some experiments with the aim of crossing the
phase-space of the 3:2 MMR in a representative way (yet the choice
of the crossing plane is not unique).

In the bottom row of Fig. 4, we show the evolution of two
resonant solutions, the nominal MCMC one (left), and the one with
eccentricity for the second planet ~ 0.02, i.e., the nominal value in-
creased by 50% (right). A different proximity to the periodic orbit is
related to different behaviour of the critical angles. The NAFF dy-
namical maps reveal the MMR structure and mark the separatrices.
However, while the right separatrix is clearly visible in the whole
e p-range, the left separatrix apparently “diffuses” and vanishes
at small eccentricities. In fact, in the small-eccentricity regime the
separatrix may not exist (Henrard & Lamaitre 1983; Delisle et al.
2015), and the X-plane is more useful for resolving the resonance
structure.

Figure 5 shows two dynamical maps in the X-plane computed
in terms of | f2/ fi —3/2|. The left-hand panel is for A-NAFF. In this

plot we also marked unstable solutions detected with the symplectic
MEGNO indicator, computed for 72,000 years with a time-step of
0.5 days. They form a loop, with a filled circle inside, which marks
a stable periodic orbit associated with the 3:2 MMR. The nominal
model (marked with a star symbol) lies outside the loop. The right-
hand panel shows this region in terms of the M -NAFF (only the
quadrant II is shown). The loop of unstable solutions overlaps with
an increase of |fa/f1 —3/2|, and the libration zone has a sharp
border.

In the left column of Fig. 6, for a reference as well as for a bet-
ter representation of the TTV models, we report two—dimensional
(a,e) M-NAFF dynamical maps for the four representative GEA
models in Tab. 2. For the anti-aligned, low eccentric (GEA I), mod-
erate eccentric (GEA-III), and high eccentric (GEA-IV) models, re-
spectively, the resonant structures are generally similar. Some dif-
ferences may be observed between fine structures presented in the
maps, which indicate a small dependence on eccentricities. As ex-
plained above, the left separatrix does not clearly appear at low
eccentricities due to its very narrow width. Large regions of strong
dynamical instability appear at moderate eccentricities beyond the
resonance borders, yet the 3:2 resonance persists for eccentrici-
ties as large as 0.3. All the GEA solutions are found inside the
3:2 MMR dynamical structure bounded by two separatrices in the
(ay,ez)—and (aj, ey )—planes. We recall that in the M -NAFF maps,
dark-blue zones and strips, with the lowest values of |f/f> —3/2|
correspond to the periodic orbits in the rotating frame, and are as-
sociated with the 3:2 MMR centers for the given map coordinates.

In the middle column of Fig. 6, we calculate the amplitude of
the two critical angles in one—dimensional a; scans across fixed,
nominal eccentricities. As for the NAFF structures, these scans are
similar to each other, showing critical angles librating with low am-
plitude close to the centre of the 3:2 commensurability region. Sig-
nificant differences appear for the aligned case, in which the first
critical angle (¢3.2.1) circulates in all the 1-dim domain. In the right
column of Fig. 6, the time evolution of the critical angles is repre-
sented in the (03.2,1,03:2,2)-plane.

In Fig. 7, we show the A-NAFF dynamical maps for the four
GEA best-fitting solutions, computed at the X-plane. The GEA I
solution is topologically similar to the MCMC one (see Fig. 5), be-
ing close to the stable periodic orbit related to the 3:2 MMR. The
GEA 11, GEA 1II, and GEA 1V are topologically similar to each
other. All of them are inside the dynamically resonant region deter-
mined by the very low values of |f2/f] —3/2|. For GEA III (which
we chose as a representative for this group of configurations), the
MEGNO unstable regions overlap with the A-NAFF resonant bor-
ders. Interestingly, the location of the GEA III best-fitting solution
coincides almost exactly with the position of the periodic orbit.

6 MIGRATION

As we demonstrated above, the TTV fitting cannot give any unique
best-fitting configuration. There are observationally permitted sys-
tems with eccentricities ranging from very small values up to ~ 0.1
and possibly beyond. The relative orientation of the apsidal lines
cannot be constrained either, since both aligned and anti-aligned
orbits are possible. We have shown also that the MCMC best-fitting
configurations depend strongly on the eccentricities priors.

It is well known that convergent migration results in reso-
nant systems with anti-aligned apsides (e.g., Batygin & Morbidelli
2013). Moreover, if the migration is smooth and acts long enough
the final systems are periodic configurations (Migaszewski 2015).

6102 YoJel\ 1 uo1senb Aq 96/208EG/1 2/ Z1S/S_IUW/SE0 "0 | /I0p/10BISqE-301LIB-00UBAPER/SEIUW/WO02 dNo"dIWapee//:sdly Woll papeojuMO(]



KOI-1599.02 1

800 1200 1600

Transit epoch [Barycentric Kepler JD - 67.0 days]

7 5 3 logyg Ifffy - 32|

(0]

0.1112 0.111775 0.11235 0.112925 0.1135

a4 [au]

27 T ———
S MCMC e, = nom. @
t 3n/2
<
@
<
N n ................
Il
N
N 7/2
@
<

0 “ \, N

- -Tt/2 0 /2 T

¢(32,1) = 2}\.1 '3}\.2+G§1

4
2 -
0
-2
-4 KOI-1599.01 .
_6 I I |
0 400 800 1200 1600
Transit epoch [Barycentric Kepler JD - 67.0 days]
7 6 5 -4 logyg Ifoffy - 3/2|
0.3 _ J10 1214
0.2
oy
0.1
0 1
0.1112  0.111775 0.11235 0.112925 0.1135
a4 [au]
2n T T T
MCMC e, = 1.5x @

0 L I 1

-t -Tt/2 0 /2 T
¢(32,1) = 27\.1 -37\.2+651

Figure 4. Upper row: Synthetic TTV signals and the measurements for the representative MCMC solution with anti-aligned apsides (see Tab. 3). This model
yields X% ~ 1.1. Middle row: Dynamical FMFT maps of the 3:2 MMR, obtained with A-NAFF (left panel) and M -NAFF (right panel), respectively for
calculating the proper mean motions fi, f> and their ratio. The star marks the nominal initial condition. The grid has the resolution of 512 x 360 points, each
integrated for 2'8 time-steps of 0.4 d, for constructing the time series and resolving the proper frequencies f; 2. Bottom row: Evolution of the critical angles,
for the nominal MCMC solution (the left panel) and for a model with eccentricity e; ~ 0.02 (the nominal value increased by 50%, the right panel).

Recently, Migaszewski & GoZdziewski (2018) showed that anti-
aligned orbits can be misinterpreted as aligned ones due to the
TTV model degeneracy. This is why we limit our analysis to anti-
aligned systems and we will not make any attempts to reconstruct
the aligned configurations on the way of migration. However, even
with this restriction, a migration-based reconstruction of the KOI-
1599 system formation is a non-trivial task due to complex and
non-deterministic constraints.

Inward migration of planets due to their tidal interaction with
the protoplanetary disc is a widely accepted formation scenario for

short-period planets. It is also well known that the convergent mi-
gration of two planets results in locking them into mean motion
resonance (e.g., Snellgrove et al. 2001; Lee & Peale 2002). In this
section, we study the planetary migration as a way in which the
KOI-1599 system was formed. We use the parametric model of mi-
gration (Papaloizou & Larwood 2000; Beaugé et al. 2006; Moore
et al. 2013; Voyatzis 2016), in which the N-body astrocentric New-
tonian equations of motion of the i-th planet are completed with the
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Figure 5. Dynamical maps in terms of |f>/f; —3/2| in the representative plane of initial conditions X for the C and K integrals fixed at their values computed
for the best-fitting MCMC model. The left panel is for the A-NAFF and the right panel is for a close-up of quadrant II, involving the nominal solution (the star
symbol), derived with the M -NAFF. Small white filled circles in the left panel are for unstable solutions detected with the MEGNO indicator (Y) > 5 in a
grid of 256 x 256 initial conditions. The MEGNO indicator was integrated for 72,000 outermost periods (~ 2 x 10° days), for each point in the grid. The filled
circle marks stable periodic orbit associated with the 3:2 MMR. The resolution of the maps is 256 x 256 points. See the text for more details.

following acceleration which mimics the planet-disc interaction:

where v; is the i-th planet’s astrocentric velocity, v ; is its Keplerian
velocity for a circular orbit of radius r; (the astrocentric distance
of planet 7). The time scale of migration is denoted with t;, while
the circularization time scale is given by 7; divided by a factor ;.
Within the model, we can choose the parameters freely in order to
obtain the observed configuration, without considering particular
disc properties.

Since, as shown above, the observational system appears as
dynamically resonant, and likely has evolved into the 3:2 MMR via
migration, we may a priori consistently impose the TTV signals
characteristics, like their amplitudes and periodicities, as well as the
period ratio. In this way, we avoid using the best-fitting Keplerian
orbital elements as a target for the migration simulations, since they
are dependent on additional assumptions (like eccentricity priors).

Before constrain the observables mentioned above, we ask
how the TTV signals of a system which was formed on the way of
migration should look like. The TTV signals of a pe<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>