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ABSTRACT
HR 8799 is a nearby star hosting at least four ∼10 mJup planets in wide orbits up to ∼70
au, detected through the direct, high-contrast infrared imaging. Large companions and debris
discs reported interior to ∼10 au, and exterior to ∼100 au indicate massive protoplanetary disc
in the past. The dynamical state of the HR 8799 system is not yet fully resolved, due to limited
astrometric data covering tiny orbital arcs. We construct a new orbital model of the HR 8799
system, assuming rapid migration of the planets after their formation in wider orbits. We found
that the HR 8799 planets are likely involved in double Laplace resonance, 1e:2d:4c:8b MMR.
Quasi-circular planetary orbits are coplanar with the stellar equator and inclined by ∼25◦ to
the sky plane. This best-fitting orbital configuration matches astrometry, debris disc models,
and mass estimates from cooling models. The multiple mean motion resonance (MMR) is
stable for the age of the star ∼160 Myr, for at least 1 Gyr unless significant perturbations to
the N-body dynamics are present. We predict four configurations with the fifth hypothetical
innermost planet HR 8799f in ∼9.7 au, or ∼7.5 au orbit, extending the MMR chain to triple
Laplace resonance 1f:2e:4d:8c:16b MMR or to the 1f:3e:6d:12c:24b MMR, respectively. Our
findings may establish strong boundary conditions for the system formation and its early
history.
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1 IN T RO D U C T I O N

Numerous ground-based and space-based surveys of extrasolar
planets brought thousands of new detections since the pioneering
radial velocity (RV) observations (Walker 2012). Besides the RV
method, the most successful observational techniques are transits,
micro-lensing, eclipse timing, and direct imaging (Perryman 2011;
Bhattacharjee & Clery 2013). The observations revealed a few hun-
dreds of confirmed and well characterized extrasolar planets, ex-
hibiting a rich diversity of orbital architectures, masses, densities,
radii, as well as spectral types and evolutionary stages of single and
binary parent stars (Howard 2013). Most of the extrasolar planets
have been detected within a few astronomical units (au) of their
host stars. Only the direct imaging brought a handful detections of
massive planets beyond 10 au distance which roughly compares to
the orbit of Saturn in the Solar system. This natural but extremely
demanding observational technique is called the Holy Grail of exo-
planet searching (Bhattacharjee & Clery 2013). The direct imaging
may provide information on masses, radii, chemical composition,
atmospheres, and orbital architecture (Oppenheimer et al. 2013)
resulting in a complete characterization of extrasolar planetary sys-
tems. The main limitations are the angular resolution and contrast
requirements, reaching more than 20 stellar magnitudes. Therefore,
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the prime targets are only massive, young and still self-radiating
giant planets or brown dwarfs, in orbits beyond a few au of their
host stars. A recent survey (Wahhaj 2013) of 57 debris disc stars
shows at 95 per cent confidence that <13 per cent of these stars
have a >5mJup planet beyond 80 au, and <21 per cent of debris
disc stars have a >3mJup planet outside of 40 au. The HR 8799
(Marois et al. 2008, 2010) belongs to a rare sample of stars hosting
planets discovered by the direct imaging (Konopacky et al. 2011).
The HR 8799 system remains truly exceptional as the only multi-
ple and dynamically compact configuration of four giant planets in
∼7–10 mJup mass range.

Since the discovery, the HR 8799 system receives an enor-
mous attention. Tens of papers and proceedings are devoted to the
age, companion masses, the orbital architecture of this system and
its stability, debris discs, long-term evolution and formation (e.g.
Goździewski & Migaszewski 2009; Reidemeister et al. 2009; Su
et al. 2009; Fabrycky & Murray-Clay 2010; Marshall, Horner &
Carter 2010; Moro-Martı́n et al. 2010; Bergfors et al. 2011; Currie
et al. 2011, 2012; Soummer et al. 2011; Baines et al. 2012; Sudol &
Haghighipour 2012; Esposito et al. 2013; Oppenheimer et al. 2013;
Marleau & Cumming 2014; Matthews et al. 2014), to mention just a
handful of these works. However, two questions seem still opened:
what is the dynamical state of the HR 8799 system, and how this
system has formed (Marois et al. 2010).

None of simple, analytic criteria of stability apply to the HR
8799 system. The early dynamical analyses (Goździewski &
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Migaszewski 2009; Reidemeister et al. 2009; Fabrycky & Murray-
Clay 2010) of the three-planet systems announced in the discovery
paper (Marois et al. 2008) revealed that apparently circular, wide
(∼100 au) orbits are separated by less than 3–4 mutual Hill radii.
Such configuration must self-destruct statistically in 100 000 yr
time-scale (Chambers, Wetherill & Boss 1996; Chatterjee et al.
2008) unless a protecting mechanism is present. Such a mechanism
maintaining the stability for the star lifetime can be the mean mo-
tion resonance (MMR). Indeed, three outer planets hosted by the
HR 8799 are most likely involved in stable Laplace 1d:2c:4b MMR
(Goździewski & Migaszewski 2009; Reidemeister et al. 2009; Fab-
rycky & Murray-Clay 2010; Marshall et al. 2010; Soummer et al.
2011), similarly to innermost moons of Jupiter (Io, Europa and
Callisto). (This is further confirmed in this paper). The orbits are
low-eccentric, coplanar and inclined by ∼20◦–30◦ to the sky plane.
Companion masses are estimated in 5–7 mJup for planet b and in
7–10 mJup for planets c and d, in accord with evolution theories and
cooling rates of sub-stellar objects (Baraffe et al. 2003). This early
understanding of the HR 8799 system with three outer planets is
roughly consistent across the literature.

However, after the discovery of the fourth planet (Marois et al.
2010), there is no unique nor certain orbital model that predicts
long-term stable dynamical evolution anymore (Marois et al. 2010;
Currie et al. 2011, 2012; Konopacky et al. 2011; Sudol & Haghigh-
ipour 2012; Esposito et al. 2013). This problem might be expected.
The initial condition of the four-planet system involves almost 30
free parameters (osculating orbital elements and masses). The ob-
servational time window of ∼15 yr is very narrow as compared
to the orbital periods between ∼50 and ∼500 yr, i.e. only ∼30 to
∼3 per cent of the innermost and outermost orbital arcs, respec-
tively. A small number of ∼60 observations with significant uncer-
tainties (∼1 per cent) results in the ratio of measurements per the
degree of freedom close to 4. In contrast, to well characterize plan-
etary orbits by the RV technique, this ratio should be 6–7, provided
that data cover roughly 1–2 longest orbital periods. Any determina-
tion of the HR 8799 orbits by the common kinematic (Keplerian)
or N-body (Newtonian) approaches is badly constrained. Actually,
it is not clear, whether this young system is dynamically stable at
all, and could be disrupted due to strong mutual interactions and
dynamical chaos present (e.g., Goździewski & Migaszewski 2009;
Sudol & Haghighipour 2012; Esposito et al. 2013).

The second unsolved problem regards close proximity of two
inner planets to the parent star, interior to ∼25 au orbit. The present
planet formation theories cannot explain creation of all four planets
in situ by one mechanism (Marois et al. 2010). Because the spectral
studies reveal similar sizes, chemical compounds and age of the
planets (Marois et al. 2010), also the birth conditions of all planets
likely have been similar. (See however the new results by Oppen-
heimer et al. 2013). Therefore, if all planets formed relatively far
from the star, through gravitational fragmentation and/or the core
accretion (see a discussion in Currie et al. 2011), they likely have
been moved to their present orbits from wider orbits. This might be
possible via the planet–planet scattering (Chatterjee et al. 2008) or
the planetary migration. The planet–planet scattering might explain
the marginal stability of the system reported in many papers. How-
ever, the Spitzer and Herschel observations (Chen et al. 2006; Su
et al. 2009; Matthews et al. 2014) detected two coplanar, massive
debris discs and an extended spherical halo around HR 8799. The
inner warm disc reminds the asteroid belt, while the outer cold disc
is similar to the Kuiper Belt in the Solar system. The presence of
at least four giant planets and extended debris features are sugges-
tive for a particularly massive protoplanetary disc. The presence

of such a large disc might support and indicate the fragmentation
formation and migration scenario. The migration could be rapid in
such a presumably massive disc, in accord with estimates of the
100 au migration time-scale as short as 104 yr (Baruteau, Meru &
Paardekooper 2011).

In this paper, we report a possible solution of both these prob-
lems, although focusing mainly on the orbital properties the HR
8799 system and its global dynamics. We derived a long-term sta-
ble N-body model of the HR 8799 system in accord with astrometric
observations and companion mass estimates published to date. This
self-consistent model relies on three basic assumptions, which ac-
tually reflect the results in the extensive literature: (i) the current
HR 8788 planetary system emerged due to joint migration of four
(or even more) massive planets that have been formed in wide or-
bits, (ii) the system is coplanar or almost coplanar, (iii) the system
is long-term stable and the stability is maintained by the MMRs.
These assumptions lead us to construct a new optimization algo-
rithm for finding such configurations, which are strictly stable and
fully consistent with astrometry and astrophysical mass constraints.

Our approach differs from common methods of modelling plane-
tary systems by a crucial aspect. We assume that the orbital elements
are not free nor independent parameters of the data model. Instead,
the orbital elements are constrained by the dynamical evolution gov-
erned by planetary migration, hence the orbits are instantly coupled.
This component of the optimization might be thought as a general-
ization of the self-consistent N-body fitting (Laughlin & Chambers
2001) constrained by the dynamical stability (e.g. Goździewski,
Migaszewski & Musieliński 2008a; Goździewski & Migaszewski
2009) which imply a complex discretization of the parameter space.
The method makes use of a heuristic model of migration (Moore
& Quillen 2013) and theoretical estimates of the masses varied in
prescribed, yet reasonable ranges derived on the grounds of recent
cooling models, see the very recent paper by Marleau & Cumming
(2014).

This paper is structured as follows. In Section 2, we present a
short review of the recent literature devoted mostly to the orbital
models of the HR 8799 system. Section 3 presents our new approach
of the optimization of astrometric data through constraining it by the
planetary migration. We call this method the Migration Constrained
Optimization Algorithm (MCOA from hereafter). Section 4 regards
the results and details of orbital architectures of the HR 8799 system
derived with the MCOA. We re-analyse older data in (Marois et al.
2008) and early models including three outer planets b, c, d as well as
the most recent and complete literature data set and the best-fitting
four-planet model. A single-epoch characterization of three- and
four-planet systems is discussed. We also consider ephemeris of the
fifth, hypothetical planet interior to the innermost planet e. Section 5
regards important aspects of the stability analysis. Conclusions are
given in Section 6. At the end, we provide a compilation of the
observational data (Tables A1–A4) and our ephemeris of the four-
and five-planet models (Tables B1–B5) discussed in Section 4.

2 LI T E R ATU R E M O D E L S O F T H E H R 8 7 9 9
SYSTEM

Shortly after the discovery, Fabrycky & Murray-Clay (2010) found
that the stability of the three-planet system may be protected by
the three-body Laplace 1d:2c:4b MMR. The system locked in this
MMR could survive even if the planets have masses as large as
∼20 mJup. Other solutions with large eccentricities and large mutual
inclinations also were found. Goździewski & Migaszewski (2009)
found very narrow stable zones in the phase space of the system

MNRAS 440, 3140–3171 (2014)

 by guest on M
ay 18, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/
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and a few extreme solutions, like the 1d:1c MMR between two
inner planets. Reidemeister et al. (2009) concluded that all com-
panions in the discovery paper (Marois et al. 2008) may be stable
in the mass ranges of (5, 7, 7) mJup, (7, 10, 10) mJup to (11, 13,
13) mJup provided that the Laplace resonance is present. They also
found that the inclination of the orbital plane must be larger than
∼20◦. Soummer et al. (2011) extended the observational window
by ten years from the analysis of the Hubble Space Telescope (HST)
images of the HR 8799. They confirmed that stable resonances
(1d:1c MMR, 1d:2c MMR, or 1d:2c:4b MMR) found in the previous
papers are still compatible with the extended astrometric data. They
found stable Laplace resonance with low-eccentric orbit of planet
d ed ∼ 0.1 and moderate inclination of the system ∼28◦ assuming
coplanar configuration with circular orbits of the outermost planets.
After releasing these constraints they could limit the inclination to
(27.◦3–31.◦4) range and ed < 0.46. Currie et al. (2012) confirmed
these results recently by estimating the inclination of HR 8799 d as
Id > 25◦ and finding all eccentricities smaller than 0.18–0.3, with
a strong indication of not face-on orbits. Bergfors et al. (2011) ob-
served the system with NACO and VLT. They found that planet HR
8799 d is inclined with respect to the line of sight, suggesting that
its orbit is slightly eccentric or non-coplanar with the outer planets
and debris disc.

The very recent works devoted to the dynamical analysis of the
four-planet system including HR 8799 e bring sometimes mutu-
ally contradicting conclusions. Marois et al. (2010) revisited the
stability analysis in (Fabrycky & Murray-Clay 2010). By varying
parameters of planet e in the four-planet system with single 1d:2c
MMR or double 1d:2c:4b MMR, they found a few solutions surviv-
ing 160 Myr in samples of 100 000 trial models, regarding masses
in the range of 30 Myr (5,7,7,7) mJup and 60 Myr (7,10,10,10) mJup

for planets b, c, d, and e, respectively. Semimajor axis of planet
e has been changed between 12.5 and 14.5 au. Stability analysis
in Marois et al. (2010) suggest a younger age and lower planet
masses. Konopacky et al. (2011) determined eccentricity limits to
less than 0.4 for all planets. They found that the addition of the
fourth planet makes it very difficult to find any stable configuration
for masses greater than 7 mJup, also suggesting lower masses in a
younger system (∼30 Myr). Currie et al. (2011) combined the re-
sults from planet evolution models and the stability analysis to limit
the masses of planets HR 8799 b, c, d, e to the ranges of 6–7 mJup,
7–10 mJup, 7–10 mJup, and 7–10 mJup, respectively. Esposito et al.
(2013) show that planet e cannot form the 1e:2d:4c MMR if its orbit
is circular and coplanar with planets d and c, while such orbits are
allowed for the 2e:5d MMR. They found significant stable regions
for masses in the 5 mJup range, below the current estimates based
on the stellar age of 30 Myr and astrophysical models of cooling
sub-stellar objects. Sudol & Haghighipour (2012) found the system
marginally stable, surviving less than ∼5 Myr at inclinations in the
range of ∼10◦ and ∼31 Myr at larger inclinations ∼30◦. The most
stable systems also favour planet e closer to the star than is ob-
served. They conclude that the planetary masses must be less than
7–10–10–10 mJup and the system is young. Planets b and c could be
in eccentric or mutually inclined orbits with respect to planet d.

Baines et al. (2012) estimate HR 8799 mass ∼1.51 M� and
two ages ∼30 and ∼90 Myr, depending on the evolutionary track
contracting towards the zero-age main sequence or expanding from
it. These estimates of the HR 8799 age suggest that the companions
are indeed planets. The very recent work of Oppenheimer et al.
(2013) brings different spectra of the planets suggesting a greater
diversity of these objects than previously found. The Spitzer and
Herschel infrared spectra were used to resolve two coplanar debris

belts (Chen et al. 2006; Reidemeister et al. 2009; Su et al. 2009;
Hughes et al. 2011; Patience et al. 2011; Matthews et al. 2014)
divided by the radial gap between ∼15–90 au, and an extended
dust halo surrounding the whole system. Patience et al. (2011)
measured the first spatially resolved map of the HR 8799 disc at
350 µm and detected an arc of emission with a bright clump at a
distance consistent with simulations of dust trapped in a 1b:2 MMR
with the outermost planet. This result is suggestive for the planets
migrated to their current locations and that the eccentricity is low,
if the dust is trapped in a resonance (Patience et al. 2011). Su et al.
(2009) and Hinkley et al. (2011) report a dust-free hole interior to
∼6 au in the inner warm belt. Assuming an age of 30 Myr and
adopting the Baraffe et al. (2003) evolutionary models, Hinkley
et al. (2011) determined upper limit of a companion mass of 80, 60,
and 11 mJup at projected orbital separations of 0.8 au, 1 au, and 3–10
au, respectively, ruling out a brown dwarf or a small star between
0.8 and 10 au.

3 O PTI MI ZATI ON C ONSTRAI NED BY
M I G R AT I O N

A stable low-order MMR in mutually interacting planetary sys-
tem is a dynamical state forcing only certain, somehow discrete
configurations of the planets. This might be understood and visual-
ized as narrow islands of stable motions in the orbital and physical
parameter space (e.g. Goździewski et al. 2008a; Goździewski &
Migaszewski 2009). A particular multiple MMR determines or-
bital periods (and semimajor axes); stability constraints permit only
certain ranges of eccentricities; the relative orbital phases are lim-
ited by a critical argument of the MMR. Therefore, the best-fitting
orbital elements are not free nor independent parameters of the
data model. The orbital elements must be constrained by the dy-
namical evolution governed by planetary migration and orbits are
instantly coupled. Planets migrate as a whole dissipative dynamical
system that synchronizes itself to a certain state (MMR) which is
a kind of an equilibrium in the phase space. We then search for
those ‘equilibria’ which fit the observations at some epoch. A cru-
cial aspect of a practical realization of this idea is that a heuristic
rather than fully realistic model of the planetary migration (Moore
& Quillen 2013) is required to establish a chain of multiple, low-
order MMRs. The coupled migration component serves as a kind of
implicit constraint of the optimization process. The hard part of this
task is that we not know a priori which initial parameters (masses,
initial orbits, migration rates) lead to the best-fitting or acceptable
configuration.

3.1 A heuristic model of planetary migration

Mechanisms of MMRs formation are widely studied as the result
of the planetary migration (see a review by Papaloizou & Terquem
2006, and references therein). Planetary migration is a sophisticated
physical process depending subtly on many parameters. Here, we
use a simplistic, heuristic two-dimensional model of the migration
in Moore & Quillen (2013). In this model, the migration is driven
by the drag force in the form of

F = − v

2 τa
− v − vc

τe
, (1)

where v is an astrocentric velocity of a planet, vc is the Keplerian
velocity of this planet in a circular orbit at a given radius, τ a and
τ e are the migration and circularization rates of orbits, respectively.

MNRAS 440, 3140–3171 (2014)

 by guest on M
ay 18, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Multiple MMRs in the HR 8799 planetary system 3143

After Moore & Quillen (2013), we assume that τ e = Kτ a, where K
is a constant between 1 and 100. We assume that τ a is a function of
astrocentric distance r of the planet and time, i.e.

1

τa
= 1

τ1
+ 1

τ2
, τ1 = τ1,0 rα1 exp(t/T1), τ2 = τ2,0 rα2 exp(t/T2),

(2)

where αi, τ i, and Ti (i = 1, 2) are constant factors in wide ranges,
i.e. τ i, 0 ∈ [106, 108] yr, Ti ∈ [106, 108] yr, α1 ∈ [−2.0, −0.1], α2 ∈
[0.1, 2.0]. These ranges are sufficient to encompass different types
of migration, both convergent and divergent. The first term, with
α1 < 0, leads to the convergent migration, while the second term
with α2 > 0 accounts for the divergent migration. For α1 < −1.0,
the period ratios of pairs of subsequent planets Pi+1/Pi (where
Pi+1 > Pi) decrease in time, while for α1 > −1.0 the period ratios
increase.

The migration resulting from such wide ranges of the parame-
ters may occur on very different time-scales. For instance, for the
convergent term, α1 = −1.3 and τ 1, 0 = 108 yr, τ 1 ≈ 0.4 Myr and
r = 70 au, which is consistent with the time-scale implied by the
type II migration (e.g. Kratter, Murray-Clay & Youdin 2010).

To establish the orbital architecture of a studied system, there
is no need to resolve all details of physical processes forcing the
migration. We found that the heuristic model is sufficient for the
optimization. Although permitted ranges of the migration parame-
ters may seem unreasonably wide, we do not narrow these ranges
to avoid too strict assumptions on the time-scales, for instance, on
their dependences on r.

3.2 Optimization and migration algorithm in the real world

3.2.1 Parametrization and initial conditions

To initiate a single migration track of the HR 8977 planetary sys-
tem, we choose at random initial, circular orbits (semimajor axes),
planetary masses and the migration parameters. An initial semi-
major axis of an nth planet increases exponentially in accord with
an = a1exp [β(n − 1)], where β ∈ [0.2, 1.8]. Orbital longitudes
of the planets are chosen from the [0◦, 360◦] range. Masses of the
planets are constrained through astrophysical cooling models. For
instance, Marois et al. (2008) found me = (9 ± 4) mJup, md =
(10 ± 3) mJup, mc = (10 ± 3) mJup, mb = 7+3

−2 mJup. The mass
estimates depend on the star age, which is a matter of ongoing
debate. Ages among 30, 60, 90, 160, and even 1 Gyr are quoted
(Baines et al. 2012; Oppenheimer et al. 2013). Because our dynam-
ical model provide independent mass constraints, we considered a
relatively smooth mass ranges, roughly within the range [2,13] mJup

for all planets, up to ∼20 mJup in a few experiments. We integrate
the N-body equations of motion with the dissipative term (equation
1) added to the right-hand sides, until the migrating system becomes
so compact that the orbits cannot be consistent with the observations
anymore.

In this way, a given initial condition determines an evolutionary
track of the system. The problem is to find the best-fitting parame-
ters (tobs, I, �, ωrot), where tobs is an arbitrary time interval counted
from the beginning of the migration and (�, I, ωrot) are 3–1–3 Euler
angles. The best-fitting epoch tobs is a particular moment during the
migration that corresponds to correct – possibly optimal – sizes of
the orbits and relative orbital phases of the planets at these orbits.
Three relevant Euler angles (�, I, ωrot) are required to describe the
orientation of an arbitrary orbital frame w.r.t the sky plane (the ob-
server’s frame). This orientation is parametrized naturally through

classic 3–1–3 sequence of rotations: I is the inclination of the orbital
plane, � is the longitude of ascending node, and ωrot is an angle
measured in the orbital plane. We search for systems evolving in
such a manner that being observed in a certain epoch from a certain
direction, they look like the current HR 8799 system. Such par-
ticular epoch and orientation of the orbital frame together with the
migration model and its parameters determine the current orbital ar-
chitecture of the system. Obviously, the migration model, equations
(1) and (2), is simplistic and very similar final configurations may
be obtained when starting from different initial states. However, we
stress that we do not aim to answer the question: How the HR 8799
looked like at the early stages of its evolution?. We focus entirely
on its observed, geometrical architecture, and present astrometry.

Searching for the best-fitting solutions in a whole possible range
of tobs would be unreasonably time and CPU consuming. The actual
optimization of the measurements (searching for the minimum of√

χ2
ν ) begins when the migrating system looks roughly similar to

the HR 8799. This happens when the semimajor axes of four/five-
planet system are confined to the following ranges: ae ∈ [12, 17] au,
ad ∈ [23, 29] au, ac ∈ [37, 48] au, ab ∈ [62, 75] au, and af ∈ [5, 12] au,
respectively. (Note that we also consider five-planet systems with a
hypothetical, yet undetected planet HR 8799 f, see Section 4.)

To illustrate these ideas, the left-hand panel of Fig. 1 shows
an evolution of an example configuration. The top panel is for
the evolution of semimajor axes. The system migrates inwards in
relatively short time-scale of the order of 105 yr. The time axis of
(ai, t) − graphs ends at a moment at which ai for all planets reach the
upper limits of semimajor axes quoted in the previous paragraph.

The middle left-hand panel in Fig. 1 shows the evolution of the
periods ratios of pairs of subsequent planets. The red colour is for
Pd/Pe, green colour marks Pc/Pd, while blue colour is for Pb/Pc.
Initial periods ratios are ∼3, ∼5, and ∼2 for subsequent pairs of
the planets. After a few of 104 yr, all subsequent pairs of planets are
already locked in 2: 1 MMRs. For each pair of subsequent planets,
one of the two-planet critical resonant arguments,

θ1:2 = λ1 − 2 λ2 + ωi, i = 1, 2,

where λ1, 2 and ω1, 2 are the mean longitudes and pericentre argu-
ments, is already librating around 0◦. However, the system evolves
chaotically and the four-body resonant argument circulates in the
whole permitted range of [−180◦, +180◦]. The four-body critical
resonant argument is a generalization of the Laplace resonant argu-
ment, i.e. θ1: 2: 4 ≡ λ1 − 3 λ2 + 2 λ3, where the mean longitudes λi,
i = 1, 2, 3, are ordered from the innermost to the outermost planet.
For the three-planet Laplace 1d:2c:4b MMR, there is only one com-
bination of the longitudes forming the critical resonant argument.
For a four-planet 1e:2d:4c:8b MMR (actually, this is the most likely
orbital configuration of the HR 8799 system found in this paper),
there are more critical arguments possible. We chose the following
critical argument:

θ1:2:4:8 = λ1 − 2 λ2 − λ3 + 2 λ4 ≡ λe − 2 λd − λc + 2 λb,

which librates around 0◦ in the four-planet configurations of the HR
8799 system. The bottom left-hand panel of Fig. 1 shows the time
evolution of the critical resonance θ1: 2: 4: 8 for some time of typical
migration run.

3.2.2 Fine tuning of the migration rates

The orbital evolution of a planetary system occurs in three different
time-scales. The shortest time-scale is related to the orbital periods.
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Figure 1. Temporal evolution of a four-planet system and trapping the system into 1e:2d:4c:8b MMR. Left-hand panel: evolution of the semimajor axes ai

(i = b, c, d, e), periods ratios and the critical angle of the double Laplace MMR in a fast migration regime. Right-hand panel: evolution of ae, ee and the critical
angle θ1: 2: 4: 8 in a slow migration regime. Red symbols mark orbits well fitting the observations (formal

√
χ2

ν < 2).

The intermediate time-scale is related to the long-term conserva-
tive evolution of the system (rotations of periastrons, secular, and
resonant modulations of the eccentricities). The longest time-scale
corresponds to the migration.

After the system reaches a reasonably accurate configuration,
the migration coefficients are changed to slow down the migration
substantially. This is being done mostly for technical reasons, to
avoid overlooking a proper configuration possibly well with the

Figure 2. Same as on Fig. 1 but for different initial orbits and evolution parameters (initial conditions).

Figure 3. Illustration of the optimization algorithm constrained by planetary migration. Evolution of the best-fitting inclination (top) and
√

χ2
ν (bottom) in

time around the best-fitting solution.
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observations. If the resonant system is observed at certain epoch,
its osculating Keplerian elements (semimajor axes, eccentricities,
arguments of pericentres, mean longitudes) take some particular
values. A configuration which fits the observations consists of ap-
propriate shapes of the orbits, their orientations as well as orbital
phases. Due to the MMR lock implying quasi-periodic conjunctions
of the planets, such particular quasi-periodic, relative orbital setup
repeats in space. This repetition may take quite a long time inter-
val. In such a case, too fast migration during the repetition interval
may tight the orbits too much and we can skip a correct, optimal
configuration. At some instant the planets may be phased correctly
by the MMR lock but their orbits are still too extended to fit the
observations. However, after the next repetition period, appropriate
orbital phases might appear when the migrating system is already
too compact to fit the data. A slower migration increases a chance
of fixing proper orbital phases simultaneously with other orbital
elements of the planets.

A slow enough migration is crucial because it helps to lock the
system into the multiple-body MMR. But the migration cannot be
also too slow or arbitrarily slow. At the initial stages of migration,
the system is strongly chaotic (see Fig. 1) until the four-planet MMR
lock appears and the whole system may be ‘missed’ at all due to a
self-disruption. The resonance locking should then occur in a time-
scale shorter than a characteristic instability time-scale. An optimal
migration rate was chosen after a number of numerical experiments.
We must underline that the multiple-body MMRs trapping does not

occur always and ‘easily’. The MCOA requires much care and a
fine tuning in this respect.

The MCOA may be further simplified and optimized for CPU
resources. Once the orbital phases and eccentricities are constrained
through a resonance, the migration causes the semimajor axes decay.
Because the N-body dynamics are essentially scale-free, the scale
of the system may be a free (fifth) geometrical parameter of the
model. We did not explore this approach in this paper, but likely
that makes the MCOA run more quickly and find better fits to the
observations. (Credits of this improvement go to the reviewer).

3.2.3 Example evolutionary tracks of migrating systems

These thoughts and the results of accompanying experiments are
illustrated in Fig. 1. The right-hand panels of this figure present the
orbital evolution during a slow migration. Subsequent panels, from
the top to the bottom are for graphs of ae(t), ee(t), and θ1: 2: 4: 8(t), re-
spectively. The migration rate for planet e is less than ∼1 au Myr−1.
After ∼1 Myr, the systems locks into exact 1e:2d:4c:8b MMR. Am-
plitudes of eccentricities ee(t) and critical angle θ1: 2: 4: 8 steadily
decrease. After ∼2 Myr the simulated configuration looks like the
actually observed HR 8799 system. Middle parts of the elements
graphs are marked in red indicating reasonably good solutions that
provide

√
χ2

ν < 2.
This simulation concerns the actual evolution of the best-fitting

four-planet model IVa, which is found rigorously stable (see

Table 1. Orbital osculating elements of the best-fitting solution IVa at the epoch 1998.83. The stellar
mass m0 = 1.56 M�. Note that due to the geometry the � angle may take two values that differ by 180◦,
however the pericentre longitude � is preserved after the rotation of the nodal line by 180◦.

m (mJup) a (au) e I (deg) � (deg) � (deg) M (deg)

HR 8799 e 9 ± 2 15.4 ± 0.2 0.13 ± 0.03 176 ± 6 326 ± 5
HR 8799 d 9 ± 3 25.4 ± 0.3 0.12 ± 0.02 25 ± 3 64 ± 3 91 ± 3 58 ± 3
HR 8799 c 9 ± 3 39.4 ± 0.3 0.05 ± 0.02 (244 ± 3) 151 ± 6 148 ± 6
HR 8799 b 7 ± 2 69.1 ± 0.2 0.020 ± 0.003 95 ± 10 321 ± 10

Figure 4. Relative astrometric positions of the planets (red filled circles), orbital arcs for the best-fitting model IVa (black curves), and stable solutions within
the 3σ confidence level of the best-fitting model (green curves).
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Section 4). However, even very similar configurations can be ob-
tained from quite different initial systems. Indeed, the next Fig. 2
shows the results for a solution with marginally worse

√
χ2

ν . In this
case the initial orbits are much more extended. A desired trapping
into the 1e:2d:4c:8b MMR takes place ∼2 Myr before the system
migrates into the observed configuration.

Fig. 3 presents one-dimensional scans of temporarily best-fitting
inclination I and an instant

√
χ2

ν as functions of tobs during the
stage of slow migration. These data are found for the best-fitting
configuration with

√
χ2

ν ≈ 1.15 and I ≈ 25◦. After each period of
∼400 yr, which is actually the orbital period of planet b,

√
χ2

ν pos-
sesses minima of varying depth. Although the planets have orbital
phases close to best-fitting values, other osculating elements might
be still not optimal; hence, we should examine a time sequence of
such local minima of

√
χ2

ν to find the best model. If the orbital
phases are distinct from their observed values, the temporal best-
fitting inclination and the two remaining orientation angles do not
take any reasonable values.

3.2.4 Non-standard features and limitations of the MCOA

It might be surprising that the MCOA is supposed to constrain
much more parameters than the number of observations. We un-
derline here that only four parameters of the migration model are
free: three Euler angles describing orientation of the orbital frame
w.r.t. the observer frame and the osculating epoch. All remaining
orbital elements are self-constrained by the common migration and
trapping the planets in a multiple MMR.

By the design and assumptions, our approach can be useful for
predicting positions of planets in multiple systems when only a
few observational epochs are available (see Section 4). The MCOA
might also help to verify if putative candidates are bounded to
the star. In principle, the minimal number of required parameters
(four) is equal to the number of data provided by two astrometric
measurements of two companions. This may be provided by single-
epoch detection of two massive, spatially close planets or sub-
stellar objects which are presumably involved in a low-order MMR
(Section 4).

The MCOA will almost certainly fail if planetary masses are
small, and non-resonant configurations are possible. However, we
consider here a particular class of planetary systems whose param-
eters are biased through natural limits of the direct imaging. The
MCOA may successfully model such systems by making use of
their essential physical and orbital characteristics.

A complete modelling of four- or five-planet HR 8799 con-
figurations involves the optimization and stability analysis, and
requires significant computational resources. For this work, we
needed roughly ∼100 CPU cores for 2–3 weeks, to sample densely
the space of the initial parameters and evolutionary tracks, and to
gather possibly large statistics of the best-fitting models. The max-
imal Lyapunov characteristic exponent (MLCE) criterion (Cincotta
& Simó 2000; Cincotta, Giordano & Simó 2003) and direct numeri-
cal integrations were used to verify stable models and to reconstruct
the MMRs structures (see Section 5 for details). This step of dynam-
ical post-analysis of the best-fitting models is also CPU intensive.
We estimate its cost for ∼1000 CPU cores for 2–3 weeks.

4 A R C H I T E C T U R E S O F TH E H R 8 7 9 9 S Y S T E M

To recover likely and dynamically stable models of the HR 8799 sys-
tem, we consider a few orbital architectures as well as five distinct

sets of observations (see Tables A1–A4). Data set D1 comprises
of all astrometric measurements published till 2013 August. This
data set diminished by observations of planet e is called data set
D5. We analyse also data set D2 that consists of astrometric mea-
surements published in the discovery paper (Marois et al. 2008).
Data sets D3 and D4 mimic single-image detection of three and
four planets. These sets consist of only three and four most accu-
rate single-epoch measurements, selected from the discovery paper
(Marois et al. 2008; data set D3, epoch 2008.61) and from a more
recent work by Currie et al. (2011; data set D4, epoch 2009.77).

We optimized a few combinations of orbital architectures la-
belled with Roman numbers III (three planets), IV (four planets),
and V (five planets) with data sets D1–D5. In all optimization
models, we assumed that masses of the planets are bounded to
∼[2, 13] mJup range, roughly within limits determined in Marois
et al. (2008, 2010), yet in a few experiments we tested also masses
up to ∼20 mJup limit. The masses were randomly varied within these
bounds in each single run. The mass of the parent star was fixed to
1.56 solar mass (Marois et al. 2010), very close to the most recent
estimate (Baines et al. 2012). The optimization algorithm was run
at least ∼104–105 times for each data set-model combination. Each
single run was initiated from random initial orbits and migration
parameters (equation 1) which were set in wide, yet reasonable
and carefully tested ranges. As the result, we gather a set of initial
conditions representing the best-fitting orbital parameters. We con-
sider all solutions within 3σ and 6σ confidence interval of a given,
best-fitting stable model.

Finally, we investigated the orbital stability of all 6σ mod-
els through direct, long-term N-body integrations up to the upper
limit of the system age (160 Myr); yet we did a few experiments
for 500 Myr and 1 Gyr intervals (Section 5). The results of the

Figure 5. Orbital architecture of the HR 8799 system in accord with the
best-fitting four-planet model IVa (Table 1). Temporal positions of HR 8799
planets are shown for 160 Myr in the astrocentric coordinate frame, coplanar
with the orbits. The inner shaded circle in the centre has an approximate
radius of the last stable orbit of a mass-less particle perturbed by the giant
planets. This might correspond to the inner warm disc investigated in a
number of papers (e.g. Reidemeister et al. 2009; Su et al. 2009; Moro-
Martı́n et al. 2010; Hinkley et al. 2011).
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Multiple MMRs in the HR 8799 planetary system 3147

long-term integrations are interpreted through the event time TE –
an interval of crossing orbits or an ejection of a planet from the
system. We also reconstructed the local structure of the phase space
(resonances widths) by computing the maximal Lyapunov exponent
expressed through the fast indicator MEGNO (Mean Exponential
Growth factor of Nearby Orbit; Cincotta et al. 2003). The dynam-
ical maps in selected orbital parameter planes were computed in
resolutions up to 720 × 360. All details of the stability experiments
and regarding a time-calibration of the fast indicator are given in
Section 5.

4.1 The nominal model IVa: four planets, data set D1

Model IVa combines four-planet, coplanar system and data set D1
comprising of all available observations in the literature. The oscu-
lating astrocentric Keplerian elements together with their uncertain-
ties are given in Table 1. This model provides

√
χ2

ν ≈ 1.15. We did
not find any other four-planet configuration consistent equally well
with the observations. Fig. 4 shows the best-fitting orbits overplot-
ted on to the sky plane together with the observations. The green
curves show very small deviations between all stable orbits in the de-
rived statistics within 3σ confidence level of the best-fitting model.
Table B1 displays the (E, N) ephemeris between epochs 1995.0
and 2020.0. Temporal evolution of all orbits for 160 Myr is shown
in Fig. 5. This best-fitting, stable, and unique orbital configuration
consistent with all astrometric data corresponds to exact first-order
MMR, double Laplace resonance 1e:2d:4c:8b MMR. The ratios of

the orbital periods for subsequent pairs of planets are very close to
2. This might be the first report of such long-term stable MMR in
the literature, although this type of solution was already investigated
(Esposito et al. 2013).

The inclination of coplanar orbits to the sky plane is well con-
strained I ≈ 25◦ ± 3◦. Statistical analysis of the rotational speed of
A5 stars imply the inclination ∼23 deg of the HR 8799 equator to
the sky plane (Kaye & Strassmeier 1998; Royer, Zorec & Gómez
2007; Wright et al. 2011). In a very recent study of the Herschel
far-infrared and submilimetre observations of the outer debris disc,
Matthews et al. (2014) measured its inclination to 26◦ ± 3◦ from
face-on and position angle of 64◦ E of N, closely matching param-
eters of our model IVa. These results, derived independently on
astrometry and on different data and observations, are very sug-
gestive for the planetary system perfectly coplanar with the stellar
equator and remnants of the protoplanetary disc.

An extensive stability study reveals that the best-fitting four-
planet configuration is strictly quasi-periodic, with the maximal
Lyapunov exponent equal to 0. The direct numerical integrations
do not show any sign of instability up to 1 Gyr (for details see
Section 5). The system is locked deeply in a four-body Laplace
MMR. The critical argument θ1: 2: 4: 8 ≡ λe − 2 λd − λc + 2 λb

librates around 0◦ with a semi-amplitude less than 20◦. The reso-
nance width across the semimajor axes is between 2 au for planet b
and ∼0.3 au for the innermost planet e.

Fig. 6 shows the (E, N) sky coordinates determined by the dy-
namically derived best-fitting solution IVa (black solid curves), as

Figure 6. Astrocentric, astrometric sky-plane coordinates x ≡ �α [arcsec] (left-hand panel) and y ≡ �δ [arcsec] (right-hand panel) for subsequent planets
(red filled circles), and orbital arcs for the best-fitting model IVa (black curves). Dashed curves are for best-fitting quadratic and linear Gibbs series expansion
to the measurements (data set D1), respectively.
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x(t) ≡ �α(t) and y(t) ≡ �δ(t), respectively, versus observation
epoch t overplotted with data points. Green dashed curves are for
the best-fitting quadratic functions of x(t) and y(t), respectively. The
number of measurements seems too small to constrain the parabolic
model for planet HR 8799 e. The dispersion of data is large, hence
we also computed the best-fitting linear model (red dashed lines).

Best-fitting parameters of the linear and parabolic models of the
sky coordinates express Keplerian (kinematic) approximations of
the astrocentric radius r(t) and orbital velocity v(t) of each planet.
These parameters are the first- and second-order terms of the Gibbs
series (f , g, ḟ , ġ) in the well-known formulae

r(t) = f r0 + gv0, v(t) = ḟ r0 + ġv0,

where r0 ≡ r(t0), v0 ≡ v(t0) is the initial condition at epoch t0. The
linear model was used in previous works to bound the space of per-
mitted orbital elements (e.g. Goździewski & Migaszewski 2009;
Reidemeister et al. 2009; Fabrycky & Murray-Clay 2010). Due to
narrow observational window this space is huge and the orbits are
kinematically unconstrained. A comparison of the dynamical best-
fitting solution IVa found in this work with the linear and parabolic
approximations of the data (Fig. 6) shows that this rigorously sta-
ble initial condition closely matches the kinematic (or geometric)
description of the measurements. Moreover, a close inspection of
panels in Fig. 6 for planets b, c, and d reveals that the dynamic
model fits the measurements even better than the first terms of the

Gibbs functions, particularly at the earliest HST images. This is
suggestive for noticeable deviations of the N-body orbits from their
first- and second-order Keplerian approximations.

Moreover, the model orbit of planet e (shown in bottom panel
of Fig. 6) seems to pass in between three apparently accurate ob-
servations. This may indicate underestimated errors of the recent
astrometric measurements in (Esposito et al. 2013). These data
points are likely responsible for orbital fits implying a large eccen-
tricity of planet e or a significant non-coplanarity (Esposito et al.
2013). Both the linear and quadratic approximations of the Gibbs
series are ambiguous that leads to badly constrained initial condi-
tion for planet e if kinematic or even plain dynamical models are
applied.

Statistics of all models gathered in ∼105 runs of MCOA are
presented on Figs 7 and 8. Fig. 7 shows projections of the orbital
parameters on to (ai, ei)-planes where i = e, d, c, b, and marked with
grey filled circles. We computed the maximal Lyapunov exponent
expressed through the MEGNO indicator (Section 5) for all these
initial conditions for 160 Myr. Solutions providing |〈Y〉 − 2| < 0.05
at the end of the integration time are considered as quasi-periodic
and rigorously stable. Blue and red filled circles in Fig. 7 mark such
stable (quasi-periodic, regular) models within the (3σ , 6σ ) and
3σ joint confidence levels, respectively. The statistics demonstrate
that orbital parameters in model IVa are well constrained. This is
also illustrated on Fig. 4. Green curves illustrate geometrically a

Figure 7. Best-fitting solutions projected on to semimajor axis – eccentricity planes for subsequent planets. The star symbol marks the nominal, best-fitting
solution in Table 1. Grey circles are for all solutions within 6σ confidence interval (

√
χ2

ν < 1.5). Blue and red circles are for rigorously stable models in the
range of (3σ , 6σ ), (1.2 <

√
χ2

ν < 1.5), and within 3σ (
√

χ2
ν ≤ 1.2), respectively. Their |〈Y〉 − 2| < 0.05 for the integration time-span of 160 Myr, covering a

few estimates of the HR 8799 lifetime in the literature.
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Multiple MMRs in the HR 8799 planetary system 3149

Figure 8. Statistics of the best-fitting solutions to four-planet model IVa and data set D1 illustrated as projections on to semimajor axis – masses planes for
subsequent planets. The star symbol marks the nominal, best-fitting solution IVa in Table 1. Grey circles are for all 6σ solutions with

√
χ2

ν < 1.5. Blue and
red circles are for rigorously stable models in the range of (3σ , 6σ ), 1.2 <

√
χ2

ν < 1.5, and within 3σ (
√

χ2
ν ≤ 1.2), respectively. Their |〈Y〉 − 2| < 0.05 for

the integration time-span of 160 Myr, covering a few estimates of the HR 8799 lifetime.

dispersion of the orbital arcs of stable solutions within 3σ level
around the best-fitting model.

Fig. 8 illustrates best-fitting models projected on to (ai, mi)-planes
in the same manner as shown in Fig. 7. Nominal masses are (9, 10,
10, 7) mJup for planets e, d, c, b, respectively. At the beginning of
each optimization run, the actual masses were selected from the
normal distribution within 2–3 mJup standard deviations around the
nominal masses. The statistics presented in Fig. 8 reveal a rela-
tively extended range of dynamical masses in the 4–12 mJup range
providing stable (quasi-periodic) solutions. This experiment shows
that the astrophysical determination of the masses through cooling
models is well consistent with dynamical constraints driven by the
migration. This somehow contradicts previous studies concluding
that the stability of HR 8799 system is possible only when the
masses are at the lowest estimates (Sudol & Haghighipour 2012;
Esposito et al. 2013).

Finally, we computed dynamical MEGNO maps in the (ai, ei)-
planes of osculating elements for all planets (see model IVa in
Table 2). The results are shown on Fig. 9. The nominal best-fitting
model IVa, which is marked with a star symbol, is found in relatively
extended zones of stable motions. These islands reveal complex
structure of the 1e:2d:4c:8b MMR, demonstrating that solution IVa
is deeply locked in this multiple resonance. See also Section 5 for
the event time TE maps and the critical argument θ1: 2: 4: 8 in a close
neighbourhood of the best-fitting model IVa.

4.1.1 Independent refinement of fit IVa through GAMP

MCOA is a CPU demanding and complex algorithm that requires
many trials to derive the best-fitting model. To verify that fit IVa is
indeed optimal, and to better characterize this solution statistically,
we applied other, independent method of constrained optimiza-
tion which is called GAMP (acronym of the Genetic Algorithm with
the MEGNO Penalty; Goździewski, Breiter & Borczyk 2008b).
GAMP relies on penalizing unstable dynamical models by some
large value of

√
χ2

ν . In this experiment, the inclinations and masses
are free parameters of the model. Masses were searched in the
[4, 20]mJup range, and inclinations in the [10◦, 33◦] range, respec-
tively. Other parameters are confined to a hypercube around fit
IVa bounded by roughly ±20 per cent deviations from each or-
bital element in model IVa. At the optimization stage, the penalty
term (system stability) is examined through the MEGNO indica-
tor, equivalent to the Lyapunov exponent. This indicator must be
evaluated for possibly short time-span 1000–2000 outermost peri-
ods of planet b, due to significant CPU overhead. As the result, we
gathered �3000 stable models with 1.13 <

√
χ2

ν < 1.15 computed
with 4 degrees of freedom (DOF), in accord with Section 3.2. Each
solution in this set is formally better in terms of

√
χ2

ν than fit IVa,
and roughly within 3σ of the best-fitting model found in this inde-
pendent search with

√
χ2

ν ≈ 1.5 for 28 DOF (all orbital elements
and masses). For each of these models, we calculated MEGNO for
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Table 2. Osculating parameters of the best-fitting four-planet solutions. The stellar mass m0 = 1.56 M�. Osculating epoch is
1998.83.

Model Planet
√

χ2
ν m (mJup) a (au) e I(deg) �(deg) ω (deg) M0 (deg)

e 8.895 706 15.443 557 0.124 958 112.198 950 325.667 983
IVa d 1.147 8.825 311 25.428 138 0.123 029 25.337 113 64.180 486 26.598 297 57.901 471

c 9.231 718 39.366 093 0.053 442 87.154 893 147.870 426
b 6.748 302 69.063 963 0.020 022 30.350 808 321.261 401

e 7.957 365 15.675 018 0.159 392 110.340 454 325.747 637
IVb d 1.172 9.961 193 25.896 792 0.151 664 28.504 826 65.493 989 24.572 894 55.420 303

c 10.417 128 39.638 907 0.071 622 84.322 520 149.892 256
b 7.920 258 69.121 225 0.020 655 27.328 258 322.721 614

e 7.511 610 15.600 838 0.130 436 110.787 818 334.739 478
IVc d 0.474 8.871 059 25.451 257 0.108 087 27.616 454 56.264 572 29.153 001 63.162 502

c 8.479 021 39.679 862 0.065 732 103.182 135 137.630 090
b 8.722 503 68.747 691 0.018 124 42.802 760 317.361 404

Figure 9. Dynamical maps in terms of the maximal Lyapunov exponent, expressed by the MEGNO fast indicator 〈Y〉, and shown in the semimajor–eccentricity
planes for the four-planet model IVa. The star symbol marks the best-fitting model (Table 1), stable, quasi-periodic solutions are marked in blue. The resolution
of each map is 720 × 360 pixels. Integration time for each pixel is ∼20 000 orbital periods of the outermost planet (�10 Myr).

32 000 periods of planet b (16 Myr). We verified (Section 5) that
MEGNO converged to (2 ± 0.05) indicates a solution dynamically
stable for at least 10 times longer motion times.

The results (stable solutions in the 1σ range of the best-fitting
GAMP model) are shown in panels of Fig. 10, which are projections
of the found models on to two parameter planes: the semimajor axis

versus eccentricity, and the inclination versus mass. In all cases,
the nominal fit is located roughly in the middle of the stable set.
All inclinations remain within a few degrees around fit IVa, and
masses are found systematically below ∼14 mJup and ∼18 mJup for
two inner planets, and two outer planets, respectively. The results
confirm that fit IVa is robust to relatively large masses, still well
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Multiple MMRs in the HR 8799 planetary system 3151

Figure 10. Best-fitting stable solutions derived with the GAMP algorithm (see the text for details) projected on to semimajor axis – eccentricity planes
(left-hand column), and on to inclination – mass planes (right-hand column). The star symbol marks the nominal, best-fitting solution in Table 1. Filled
circles are for stable solutions within

√
χ2

ν < 1.15 that corresponds to 1σ of the best-fitting model found in the GAMP search with
√

χ2
ν � 1.13. Their

|〈Y〉 − 2| < 0.05 for the integration time-span of 16 Myr.
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consistent with the estimates from cooling models. The spread of
individual inclinations may be estimated as ∼5◦ around IVa value
of ∼25◦.

4.2 Statistical study of migration

We used the heuristic model of migration (equation 1) to find how
frequently a particular four-planet MMR chain forms, dependent on
planetary masses and time-scales of migration. In a first experiment
we fixed planetary masses at their nominal values in the HR 8799
system, i.e. 9, 10, 10, 7 mJup (counting from the innermost to the
outermost planet, respectively). Parameters of the migration model
were chosen randomly from wide ranges. Using notation in Sections
3.1 and 3.2, these ranges are the following: log10τ 1, 0(yr) ∈ [6,
10], log10T1(yr) ∈ [6, 10], K ∈ [1, 100], α1 ∈ [−2.0, −0.1]. The
second term τ 2, 0 was not taken into account. The initial orbits
are distributed exponentially, with a1 ∈ [30, 160] au and β ∈ [0.3,
1.8]. The orbits calculated from the exponential distribution are
then shifted randomly with Gaussian distribution (σ = 0.2 of the
nominal values). Initial eccentricities were random within [0, 0.05]
range. A given initial system was integrated for 100 Myr.

We found that slightly less than 20 per cent of simulations (18 per
cent, 1739 of 9488) ended up as stable resonant configurations. The
most frequent chain of MMRs is 3: 1, 2: 1, 2: 1, i.e. 1e: 3d: 6c:
12b MMR. More than a half of stable final systems are of this type.
Another solutions 3: 1, 3: 1, 2: 1 (17 per cent) and 4: 1, 3: 1, 2: 1
(14 per cent) are also relatively common in a sample of final config-
urations. The double Laplace MMR (2: 1, 2: 1, 2: 1 or equivalently
1e: 2d: 4c: 8b MMR) appeared in ∼10 per cent of the stable runs.
By a resonant four-planet configuration we mean a configuration
characterized by its critical argument φ librating around a particu-
lar libration centre. Table 3 summarizes the results obtained for the
nominal masses of the planets, as well as masses 50 per cent higher
and 50 per cent lower than these values, respectively.

When masses of the planets are smaller than the nominal values,
i.e. 4.5, 5, 5, 3.5 mJup, a fraction of systems that survived the integra-
tion time increases to ∼29 per cent (2878 of 9960). The number of
possible final configurations also increases. Some of MMR chains
absent in the previous test appear for smaller masses, e.g. 2: 1, 2:
1, 3: 2 (13 per cent of stable systems). The double Laplace MMR
now appears more frequently (∼20 per cent), while 3: 1, 2: 1, 2: 1
appears in ∼38 per cent cases, i.e. less frequently when compared
to the previous test.

When masses are increased (13.5, 15, 15, 10.5 mJup), only
∼12 per cent (1196 of 10235) of systems end up as stable chains
of MMRs. Moreover, there are fewer possible final configurations.
Particularly, the double Laplace resonance does not appear at all.
Three most common chains of MMRs constitute ∼92 per cent of
stable systems. This test could provide us an upper limit on plan-
etary masses in the HR 8799 system. For planets massive enough,
the double Laplace resonance, which best matches the observations,
may unlikely form through convergent migration of already formed
planets. We would like to warn the reader that the migration model
may be too simplistic: for instance, it does not take into account
any (possibly substantial) mass increase during the migration. Any
definite conclusions should be taken with much caution here.

Because parameters of the migration model were chosen from
very wide ranges, planets migrate in different time-scales, from
one simulation to another. This leads to different final MMR
configurations. Fig. 11 presents the results for four most common
MMRs obtained during simulations with the nominal masses. The
left-hand part of the diagram shows the time-scales for the double

Table 3. Percentage of simulated MMRs for different masses of planets,
i.e. the nominal masses of 9, 10, 10, and 7 mJup from the innermost to
the outermost planet, respectively (middle column), all masses increased by
50 per cent (left-hand column) and decreased by 50 per cent (right-hand
column), respectively. A notion of ‘<0.1’ means that there was one or at
most two solutions of a given type, while ‘–’ means no solution of this type.

MMR chain Percentage of solutions
e:d, d:c, c:b 1.5 × m 1 × m 0.5 × m

2: 1, 2: 1, 2: 1 – 10.2 20.3
2: 1, 2: 1, 3: 1 – – <0.1
2: 1, 2: 1, 3: 2 – – 12.9
2: 1, 2: 1, 4: 1 – 0.2 –
2: 1, 5: 3, 2: 1 – – 2.3
2: 1, 3: 1, 2: 1 – – 0.3
2: 1, 3: 1, 3: 1 – – <0.1
2: 1, 3: 1, 5: 2 – – <0.1
2: 1, 3: 2, 2: 1 – – <0.1

3: 1, 2: 1, 2: 1 57.5 51.8 37.7
3: 1, 2: 1, 3: 1 – 0.1 0.5
3: 1, 2: 1, 4: 1 – – <0.1
3: 1, 2: 1, 3: 2 – 0.1 1.8
3: 1, 3: 1, 2: 1 13.5 17.0 13.1
3: 1, 3: 1, 3: 1 – 0.2 0.2
3: 1, 5: 2, 2: 1 – 0.1 0.3
3: 1, 5: 2, 3: 1 – – <0.1

4: 1, 2: 1, 2: 1 6.4 3.1 0.8
4: 1, 2: 1, 3: 1 0.1 0.1 <0.1
4: 1, 3: 1, 2: 1 20.9 14.0 3.6
4: 1, 3: 1, 3: 1 – 0.2 0.5
4: 1, 3: 1, 4: 1 – 0.1 –
4: 1, 3: 1, 5: 2 – 0.1 –
4: 1, 4: 1, 2: 1 0.1 0.2 0.2
4: 1, 4: 1, 4: 1 0.1 0.1 <0.1
4: 1, 4: 1, 5: 2 – 0.1 0.1
4: 1, 5: 2, 4: 1 – 0.1 –
4: 1, 5: 2, 2: 1 – 0.1 <0.1
4: 1, 5: 2, 5: 2 – – <0.1

5: 2, 2: 1, 2: 1 1.3 2.5 4.0
5: 2, 2: 1, 3: 2 – – 0.3
5: 2, 3: 1, 2: 1 – – 0.4
5: 2, 3: 1, 4: 1 0.1 0.1 –
5: 2, 5: 2, 2: 1 – – 0.1
5: 2, 5: 2, 4: 1 0.1 – –
5: 2, 5: 2, 5: 2 – – <0.1

3: 2, 2: 1, 2: 1 – – 0.2

5: 3, 2: 1, 3: 2 – – <0.1

Total number of solutions 1196 1739 2872

Laplace resonance. The red filled circles present average values of
L ≡ log10 τ (yr) ≡ log10 a/ȧ for two innermost planets just before
they are captured into the 2: 1 MMR. The standard deviation of σ L

is depicted by the bars. The planets migrate in average time-scales
of ≈1 Myr, i.e. L ≈ 6 (note that the second planet migrates slightly
faster), with σ L ≈ 0.5. Green filled circles present L for the mid-
dle pair of planets, while blue filled circles are for the outermost
pair. The migration time-scale required to form the double Laplace
MMR is of the order of 1 Myr.

The MMRs chain 3: 1, 2: 1, 2: 1 form when the migration occurs
slightly slower (2–3 Myr on average). Another two chains 3: 1, 3:
1, 2: 1 and 4: 1, 3: 1, 2: 1 appear for even larger L. The latter MMR
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Figure 11. Time-scales of migration τ ≡ a/ȧ for a given planet before
MMR capture with a neighbouring planet. Each column is for a different
multiple MMR chain. Red colour marks values of τ for the innermost
pair (planets numbered as 1 and 2), green colour is for the middle pair
(planets 2 and 3), and blue colour is for the outermost pair (planets 3 and 4),
respectively.

chain form typically for L ≈ 7 for a middle pair of planets. The
inner pair migrates slower, while the outer pair migrates typically
faster. The general conclusion is that the characteristic time-scales
of migration leading to a particular chain of MMRs, are different
for different chains.

4.3 Model IVb: Could planet HR 8799 e be predicted?

Decades of observations are required to constrain orbital parameters
of very long period planets with standard methods. Relying on
discrete and in some sense deterministic outcomes of the migration
algorithm, we may consider different architectures of the resonant
systems with even very limited observations. At an extreme case,
we may turn back to 2008, when measurements for three outer
planets were published in the discovery paper (Marois et al. 2008).
Two years later, the fourth planet was detected. Having in mind the
multiple MMR model of the four-planet system, we may ask: Could
the fourth planet be predicted or found in the present observed place
if we did not have even a single data point for this planet?

Following the general idea, we assume that orbits of planets
b, c and d, as well as the ‘unseen’ planet e are outcomes of the
migration scenario. The Laplace 1d:2c:4b MMR of the outermost
planets found in the early dynamical papers must be not necessarily
preserved by the four-planet architecture. Actually, the literature
is not consistent about this problem. For instance, due to mutual
interactions and complex dissipative evolution, the 1c:2b MMR
between planets c and d might be changed to 1c:3b MMR. Many
other two-body resonances are possible as well (see Section 4.2).
The primary factor that makes it possible to distinguish between
these cases are the observations. Assuming that the system as a
whole evolves towards certain, discrete, and small number of states

Figure 12. Best-fitting solutions to four-planet model IVb (with ‘unseen’ planet e) and data set D5 comprising of all observations of three planets b, c, and d,
without data for planet e, projected on to (ae, x)-plane, where x is ee, ed, ec, eb. Grey symbols denote solutions within 6σ confidence interval (

√
χ2

ν < 1.5),
blue and red symbols are for stable solutions with (3σ , 6σ ), equivalent to 1.2 <

√
χ2

ν < 1.5, and for 3σ models (
√

χ2
ν < 1.2), respectively.
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3154 K. Goździewski and C. Migaszewski

(multiple MMRs), the observations ‘decide’ which configuration is
the right one.

We performed a series of simulations concerning the four-planet
model and D5 data set to test this idea. In this scenario, the in-

nermost planet e is unseen, and the four-planet model combined
with data set D5 is called model IVb. The results of the MCOA
search are illustrated in Figs 12–14. Similarly to the model IVa,
Fig. 12 illustrates projections of the best-fitting osculating elements

Figure 13. Left-hand panel: relative astrometry of planet e (red/blue symbols) with best-fitting four-planet model IVa to all observations (dashed curve). Grey,
green, and black curves show arcs of different families of the four-planet model IVb to the most recent observations of planets b, c, and d (data set D5). Black
curve is for the best-fitting model, green curves are for 3σ solutions and grey curves are for 6σ models (

√
χ2

ν < 1.5). Right-hand panel: a close-up of the
left-hand panel. The black curve is for the best-fitting stable solution IVb, grey dashed curve is for the best-fitting nominal, four-planet model IVa.

Figure 14. Parameters of the best-fitting model IVb to data set D5 projected on to (ae, I)-, (Pd/Pe, Pc/Pd)-, (Pd/Pe, Pb/Pc)-, and (ae, criticalangle)-planes.
The star symbol marks the nominal, best-fitting solution. Grey filled circles are for all solutions within 6σ confidence interval,

√
χ2

ν < 1.5. Blue and red filled
circles are for rigorously stable models in the range of (3σ , 6σ ), equivalent to 1.2 <

√
χ2

ν < 1.5, and within 3σ confidence level (
√

χ2
ν ≤ 1.2), respectively.

Stable models are defined by |〈Y〉 − 2| < 0.05 for the integration time-span of 160 Myr. The critical arguments for 1e:2d:4c:8b MMR, 1e:3d:6c:12b MMR,
and 1e:4d:8c:16b MMR are θ1: 4: 8: 16 = λe − 2 λd − λc + 2 λb, θ1: 3: 6: 12 = λe − 4 λd + λc + 2 λb, and θ1: 4: 8: 16 = λe − 3 λd − 6 λc + 8 λb, respectively.

MNRAS 440, 3140–3171 (2014)

 by guest on M
ay 18, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Multiple MMRs in the HR 8799 planetary system 3155

Table 4. Osculating elements and masses of the best-fitting three-planet models IIIa and IIIb. The stellar mass m0 = 1.56 M�. The osculating is epoch
1998.83.

Model Planet
√

χ2
ν m (mJup) a (au) e I(deg) �(deg) ω (deg) M0 (deg)

d 10.135 136 25.045 527 0.084 720 12.364 179 96.623 071
IIIa c 1.060 10.018 128 40.370 405 0.047 036 26.566 822 64.680 038 103.509 878 140.603 388

b 6.953 918 68.047 272 0.002 379 1.1423 28 352.986 933

d 7.923 625 24.234 342 0.072 091 203.586 910 95.496 437
IIIb c 0.053 10.656 124 39.482 602 0.019 226 18.867 507 236.887 633 296.672 146 135.283 261

b 4.587 625 68.108 515 0.002 603 146.618 350 35.666 508

on to different planes. Grey filled circles are for solutions with
√

χ2
ν

within the 6σ confidence level, while red and blue filled circles are
for 3σ models. The statistics reveals that configuration involving 1e:
2d MMR describes data set D5 better than two other configurations
with 1e: 3d MMR and 1e: 4d MMR.

We should realize here that multiple resonant configurations are
determined not only by ae, but may be also distinguished due to
different ed, ec, eb. For instance, the initial conditions for a system
involved in the 1e:2d:4c:8b MMR and in the 1e:3d:6c:12b MMR
are significantly different. This is clearly seen in the (ae, ec)-panel in
Fig. 12. Because ei are different in these two concurrent solutions,
also the best-fitting inclinations are different, as shown in the top-
left panel of Fig. 14. While the 1e: 2d MMR implies I ≈ 25◦, the
best-fitting models with 1e: 3d MMR and 1e: 4e MMR provide
much larger inclination, i.e. I ∼ 35◦. The 1e:2d:4d:8b MMR is
favoured due to lowest value of

√
χ2

ν and because its inclination
matches closely the inclination of the stellar equator ∼25◦.

These results suggest that the optimization of the four-planet
model with yet undetected innermost planet might at least help to
narrow the search areas for such a putative object and to inter-
pret the speckle images. Fig. 13 shows the actual observations of
planet e in data set D1 (let us recall: these data were not used in
the IVb experiment) with the best-fitting orbits of model IVb over-
plotted. For a reference, the left-hand panel of Fig. 13 illustrates
the best-fitting orbit IVa (dashed curve) and arcs of rigorously sta-
ble configurations (solid curves) in model IVb, respectively. Black
curve is for the best-fitting model IVb, grey curves are for configu-
rations IVb within 6σ , while green curves illustrate solutions within
3σ confidence levels. Remarkably, the best-fitting stable solutions
IVb are consistent with the actual observations as well as with the
full model IVa. The right-hand panel of Fig. 13 shows a close-up
of the previous plot. The best-fitting orbits IVb (black curve) are
plotted together with the best-fitting nominal four-planet model IVa
(grey dashed curve). Positions of the planets at the observational
epochs are marked with small tics. Clearly, these two orbits almost
overlap.

Finally, we carried out a number of simulations to examine
whether the four-planet model with unseen planet e might provide
better fits than the three-planet model. Both these models appear to
match observations in data set D5 equally well.

4.4 Models IIIa, IIIb, and IVc: single-image characterization

The orbital periods of directly imaged planets usually count in tens
or hundreds of years. The common optimization techniques require
a long period of observations to establish the true orbital architec-
ture. The literature devoted to the HR 8799 system is good evidence
of this apparently unavoidable problem. However, if a multiple,
resonant configuration is observed, the migration algorithm may be
helpful to constrain its orbits even by one single-epoch observa-

tion. This means basically single-image orbital characterization of
the system, although in the real world much longer observational
time span is required, for instance, to confirm common proper mo-
tion and the same parallax at least two, well-separated epochs are
required.

4.4.1 Model IIIa: the data in Marois et. al (2008) revisited

Data set D2 in (Marois et al. 2008) serves as a good example of
time-limited observations, which were examined by many groups.
We performed the migration constrained optimization of these data
with three-planet model (IIIa). This example might be also thought
as an excellent test-bed of the MCOA.

Osculating elements of best-fitting model IIIa for the epoch
t0 = 1998.71 are given in Table 4. Fig. 15 shows the orbital ge-
ometry of model IIIa (solid grey curves) compared to model IVa
(dashed curves), and overplotted on orbital arcs of stable solu-
tions within 3σ -confidence level (green curves). The three- and
four-planet models can be hardly distinguished, suggesting that the
Laplace resonance of three outer planets is particularly robust for a
perturbation, as large as the inner planet e may introduce.

The statistics of best-fitting models with
√

χ2
ν within the 6σ

confidence interval is shown in Fig. 16. This result confirms and
complements the earlier literature data. Similarly to model IVa, we
found relatively wide mass ranges of rigorously stable solutions (the
right-hand column in Fig. 16) which are fully consistent with astro-
physical estimates, independent on the geometric model of orbits.

Figure 15. Relative astrometric positions of the HR 8799 planets (red filled
circles) and orbital arcs for the best-fitting model IIIa combined with data
set D2 in the discovery paper (Marois et al. 2008). Best-fitting orbits of
this model are plotted with solid grey curves. For a reference, black, dashed
curves are for the best-fitting nominal four-planet model IVa related to the
whole available data in the literature (data set D1).
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Figure 16. Best-fitting three-planet models IIIa to the data published in the discovery paper (Marois et al. 2008), dataset D2, projected on to planes of the
semimajor axis – eccentricity (left-hand column) and the semimajor axis – masses (right-hand column), respectively, for subsequent planets. The star symbol
marks the nominal, best-fitting solution. Grey filled circles are for all solutions within

√
χ2

ν < 1.5 (roughly 6σ confidence level). Blue and red circles are for
rigorously stable models in the range of (3σ , 6σ ) (<1.2

√
χ2

ν < 1.5), and for the 3σ (
√

χ2
ν ≤ 1.2) confidence levels, respectively. Their |〈Y〉 − 2| < 0.05 for

the integration time-span of 160 Myr covering assumed lifetime of HR 8799.

Our stable models cover smoothly both the 10–10–7 mJup range as
well as the 7–7–5 mJup. The statistics of stable models suggests the
upper limit of masses ∼13 mJup. In spite of many trials with masses
extended to ∼20mJup, we could not find any stable configurations
with masses above this limit which are consistent with observations
at least at the 6σ confidence level. Such a limitation indicates that
the HR 8799 companions are really planets with masses below the
deuterium burning limit.

We also computed dynamical maps for the best-fitting model
(Fig. 17), which corresponds to three-planet configuration deeply
involved in the classic Laplace 1d:2c:4b MMR. The bottom-right
panel illustrates the critical argument θ1d: 2c: 4b = λd − 3λc + 2λb

that librates around 90◦. The best-fitting configuration is found
in the central part which perfectly overlaps with the minimum of
the critical angle θ = 1d: 2c: 4b librating with a semi-amplitude
∼20◦. Remarkably, the system is found long-term stable for at least
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Figure 17. Dynamical maps in terms of the maximal Lyapunov exponent, expressed by the MEGNO fast indicator 〈Y〉, in the semimajor–eccentricity planes
for subsequent planets in the HR 8799 system with three planets. This is the best-fitting model IIIa to astrometric data in the discovery paper (Marois et al.
2008). The bet-fitting configuration is deeply locked in the classic Laplace resonance. The semi-amplitude of this MMR around 90◦ is shown in the bottom-right
panel.

160 Myr in quite an extended area which is much wider than the
MEGNO zone of quasi-periodic, stable motions (not shown here).

4.4.2 Single-image characterization of a three-planet model

Going further, to mimic a single-image detection of three outermost
planets, we chose only one, single epoch 2008.61 and three mea-
surements for outer planets from the discovery paper (Marois et al.
2008). Epoch 2008.61 refers to the most precise measurement. We
optimized a three-planet model (IIIb) with this data set D3. The re-
sults are presented on Fig. 18. Red filled circles pointed out with an
arrow are for the D3 observations, while yelow/black circles mark
all remaining observations (data set D5), as the reference data. The
best-fitting orbits of model IIIb are plotted with black solid curves,
while the dashed curves are for the best-fitting solution IVa (four-
planets, full data set D1). Orbits plotted in grey have

√
χ2

ν < 1.0.
Surprisingly, even the single-epoch measurements are sufficient to
constrain the orbits. Clearly, both orbital geometries closely overlap.

The stable Laplace MMR island of best-fitting model IIIb is
illustrated in dynamical MEGNO map for planet HR 8799 c shown
in the left-hand panel of Fig. 19. A quasi-periodic character of
this solution assures us that this configuration survives for more
than 160 Myr without any sign of instability. In fact, this particular

solution IIIb has the MEGNO signature ∼2 after 160 Myr that
guarantees its stability for times 1–2 orders of magnitude longer,
for 1 Gyr or longer.

4.4.3 Single-image characterization of a four-planet model

We did a similar experiment simulating single-epoch detection of
four planets (model IVc). Data set D4 which is optimized consists
of most accurate four data points at epoch 2009.77 in Currie et al.
(2011). The results are shown on Fig. 20 in the same manner as
Fig. 18. Clearly, the best-fitting orbits derived from the full data set
D1 and from a single-epoch image D4 agree amazingly well. The
best-fitting solution is found in the centre of stable MMR island
(the right-hand panel of Fig. 19). The double Laplace MMR lock is
so robust and bounded in the orbital parameter-space that even the
minimal data are sufficient to constrain its orbital configuration in
space.

4.5 Model V: the fifth planet in the HR 8799 system?

The migrating HR 8799 planetary system stabilized by the MMRs
might involve more planets orbiting interior to the orbit of planet e.
There is a free space up to the distance ∼15 au comprising of a few
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Figure 18. Relative astrometric positions �α [arcsec] versus �δ [arcsec]
of the HR 8799 planets and orbital arcs for the best-fitting four-planet model
IVa (black dashed curves), and for the best-fitting, single-epoch model IIIb
(black solid curves). Grey curves are for model IIIb and solutions with√

χ2
ν < 1.

low order MMRs with planet e, like 1f:2e (∼10 au), 1f:3e (∼7.5
au), and 2f:5e (∼8.5 au). A detection of so close objects overshined
by the star is certainly very difficult. The contrast requirements and
angular resolution are extreme in such a case, at the technical limit
of the direct imaging. The negative results of the search for the
fifth planet by Skemer et al. (2012) put the upper orbit limit for
the hypothetical object to 1f:2e MMR with the innermost planet,

provided that this new planet has similar mass to planet e. We may
note that the zone inner to ∼8 au orbit suffers from exponential
degrading of the contrast (see fig. 3 in Skemer et al. 2012), and,
actually, less massive and luminous object might be still present.

The results Hinkley et al. (2011) also do not exclude a low-
mass object with the mass below 11 mJup between 0.8 and 10 au.
Moreover, the warm disc gap interior to ∼6 au (Su et al. 2009;
Hinkley et al. 2011; Oppenheimer et al. 2013) is incompatible with
the results of simulating the lifetimes of mass-less particles in the
four-planet system (our model IVa). We integrated ∼1000 probe
particles placed at ap ∈ [2, 16] au with initially random eccentricities
ep ∈ [0, 0.3] and with random orbital phases ∼[0◦, 360◦]. The event
time TE graph in Fig. 21 reveals that low-mass objects (large dust
particles, colliding asteroids producing that dust) could survive for
at least 160 Myr in the innermost zone of the system that ends at
∼6–7 au.

Note that due to random distribution of initial eccentricity, TE

cannot be uniquely determined; hence, the plot illustrates a border
of stable orbits in statistical sense. To confirm this result for non-zero
mass objects, we carried out much more extensive multidimensional
scan in the orbital elements space. The probe mass of ∼0.001mJup

was placed in orbit interior to planet HR 8799 e, with the semimajor
axis af ∈ [4.5, 10.5] au. Next, for each point of the pericentre
argument and the mean anomaly at the grid with 3◦ × 3◦ resolution
and spanning full angle, the initial eccentricity was sampled from
uniform distribution ef ∈ [0, 0.3]. Each orbit was then MEGNO-
integrated for 1 Myr. The results are shown in Fig. 22. Each point
in this figure marks quasi-periodic (stable) orbit. The tested region
of innermost orbits is filled with multiple MMRs. The bottom plot
shows that stable MMRs are possible only for particular initial
relative phases of the probe mass. Overall, interior to the ∼6–7 au
his zone is basically stable, in accord with two orders of magnitude
longer, direct integrations illustrated in Fig. 21. The results may be
also helpful to determine possible locations of small planets in the
system, below the current detection limit.

This experiment also suggest that the presence of a relatively
massive object interior to planet e could further clear or sculpt
dynamically the innermost debris disc.

Before examining such a hypothesis of less-massive fifth plane-
tary object, we carefully verified that the migration algorithm ‘pre-
dicts’ correctly planet e. We would like to recall that the obser-
vational circumstances were easily simulated by optimizing four-
planet model to all observations of only three outer planets d, c,
and b (data set D5). Indeed, the best-fitting simulated configuration
found the ‘missing’ planet e perfectly in place of the actual detec-
tion. Moreover, stability constraints even narrow possible outcomes
of MCOA to agree with the best-fitting, nominal four-planet model
IVa (see Figs 12–14).

We carried out a similar experiment regarding yet unseen, hy-
pothetical innermost planet f. An extension of model IVb to five
planets is quite straightforward. This model V combines the full
data set D1 with a five-planet system. The simulated mass range
of planet f is assumed similar to planet e, around 6 mJup with a
significant dispersion ±4 mJup.

The results of more than 105 single runs of MCOA are illustrated
in Figs 23–25. Fig. 23 illustrates the sky-plane geometry of the
statistics of solutions within 6σ confidence level. Fig. 24 shows the
osculating elements and masses of the hypothetical planet projected
on to the planes of the semimajor axis – eccentricity (the left-hand
panel) and on to the semimajor axis – mass (the right-hand panel).
The measurements are consistent with two MMRs chains result-
ing in similar

√
χ2

ν ∼ 1.18 – the five-planet triple Laplace
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Figure 19. Dynamical maps in terms of the MEGNO 〈Y〉 in the semimajor axis–eccentricity planes for planet HR 8799 c. Left-hand panel illustrates the
best-fitting solution IIIc to only three data points in the discovery paper (Marois et al. 2008) mimicking a single-image detection of three outer planets.
Similarly, right-hand panel is for the best-fitting model IVc to four data points in (Currie et al. 2011) that might represent a detection of four planets at single
image. The star symbol marks the best-fitting model. Resolution of each map is 720 × 360 initial conditions. The integration time for each pixel is ∼10 000
orbital periods of the outermost planet (�5 Myr).

Figure 20. Relative astrometric positions �α [arcsec] versus �δ [arcsec] of planets and orbital arcs for the best-fitting four-planet models IVa (black dashed
curves), and for the best-fitting single-epoch model IVc (black solid curves). Grey curves are for solutions IVc with formal

√
χ2

ν < 1.

resonance, 1f:2e:4d:8c:16b MMR, and the five-planet
1f:3e:6d:12e:24b MMR, which we refer to as the 1f:2e MMR
and the 1f:3e MMR for short, respectively. A multiple MMR
comprising of the 2f:5e MMR combined with double Laplace

MMR of four outer planets is also possible but this solution has
significantly larger

√
χ2

ν ∼ 1.25.
Each of the two dominant MMRs appears as two well-bounded

families of orbits which are differently phase-spaced. These families
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Figure 21. Statistical event times TE for mass-less particles in the inner
zone of the HR 8799 four planet model IVa. Particles placed interior to
∼7 au with random eccentricities ep ∈ [0, 0.5] and random orbital phases
survive for at least 160 Myr.

Figure 22. A simulation of stable regions in the semimajor axis versus
eccentricity plane (top) and in the semimajor versus relative orbital phase
plane (bottom) for hypothetical massive, Mars-like asteroids ∼0.001mJup.
Low-order two-body MMRs with planet HR 8799 e are labelled. Each dot
represent a quasi-periodic, stable orbit for orbital phase illustrated in the
bottom panel. The MEGNO integration time of 1 Myr is equal to ∼20 000
orbital periods of planet HR 8799 e. Black filled circles are for stable orbits.
See the text for details.

are distinguished by particular critical argument of the MMR. We
call them Va (1f:3e MMR with

√
χ2

ν ∼ 1.176), Vb (1f:3e MMR
with

√
χ2

ν ∼ 1.177), Vc (1f:2e MMR with
√

χ2
ν ∼ 1.169), and Vd

(1f:2e MMR with
√

χ2
ν ∼ 1.25) from hereafter (see also Table 5

and ephemeris tables, Tables B2–B5 for all models). We note that
the outer planets are always involved in a double Laplace resonance,
1e:2d:4c:8b MMR.

Overall, the best-fitting mass ranges of the putative fifth planet
seem well correlated with the MMR type. The triple Laplace MMR
favours planets with ∼1–4 mJup, while stable 1f:3e MMR solutions
permits the masses much larger, ∼2–8 mJup (see the right-hand panel
in Fig. 24).

Figure 23. Observations of planet e (red/blue filled circles) overplotted on
best-fitting orbits of planets e and f in model Va (black solid curves). Orbital
arcs of planet f between epochs 2009.58 and epoch 2011.86 are plotted with
solid grey curves (

√
χ2

ν < 1.5, equivalent to 6σ solutions) and with green
curves (

√
χ2

ν < 1.3). Arcs of stable orbits within 3σ confidence interval are
marked with tics.

We tested the long-term stability of ∼2000 solutions within 6σ

confidence interval of the best solutions with
√

χ2
ν ∼ 1.18, by in-

tegrating MEGNO for 160 Myr. The results of detailed dynamical
analysis combined with

√
χ2

ν seems to narrow the likely positions
of planet f to basically four well-bounded locations. The dynam-
ical maps computed for lowest

√
χ2

ν solutions in each family are
illustrated in Fig. 26. Except for the 1f:2e MMR model Vc, these
solutions are found in the centres of islands of long-term stable mo-
tions. Models Va, Vb, and Vd are long-term stable. For a reference,
the orbital architecture of model Va (a family of the 1f:3e MMR) for
160 Myr is illustrated in Fig. 27. This plot marks also the inner, thin
disc of the habitable zone extending roughly to ∼4 au, interior to the
orbit of planet f. The region inner to orbit of planet e may contain a
warm debris disc detected by Spitzer (Reidemeister et al. 2009; Su
et al. 2009). The dynamical structure of this region is certainly very
complex. We postpone its analysis to a future paper.

The Vc solution (1f:2e MMR) is found as marginally stable.
This is confirmed by Fig. 28 which illustrates the MEGNO be-
haviour for this model, as compared to the rigorously stable model
Va. The best-fitting configuration disrupts after ∼120 Myr, al-
though is found at the edge of quite extended stability zone
(see also the TE dynamical map in Fig. 30 and a discussion
in Section 5).

Our predictions do not contradict a negative result of the search
for the fifth planet in Skemer et al. (2012). For instance, the 1f:3e
MMR orbits are systematically closer to the star than the 1f:2e
MMR orbits (see Fig. 25). At distances ∼8 au the contrast of LBT
images drops exponentially, see figs 3 in Skemer et al. (2012) and
in Esposito et al. (2013). We also note that the 1f:2e MMR models
systematically tend to low masses of ∼2–3 mJup; hence, the object
would have much lower luminosity than Skemer et al. (2012) tested
on fake images.

In all examined models, the resonance islands span up to ∼0.1
au, hence are extremely narrow when compared with the overall
dimension of the system (∼100 au). This is a clear warning that
a search for the fifth planet with the common, ‘traditional’ opti-
mization methods would be difficult and unlikely possible due to
large number of free parameters and narrow observational window.
With the help of MCOA, planet f may be ‘pre-detected’ without
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Multiple MMRs in the HR 8799 planetary system 3161

Figure 24. Orbital parameters of the five-planet model V regarding yet unseen, hypothetical planet HR 8799 f. These parameters are projected on to semimajor
axis – eccentricity (left) and the semimajor axis – mass (right) planes of this planet, respectively. The red and white star symbols mark the nominal, best-fitting
solutions that correspond to distinct families of these models: the 3f:1e MMR (

√
χ2

ν = 1.176) and 2f:1e MMR (
√

χ2
ν = 1.169), respectively. Grey circles are

for all (also unstable) solutions with
√

χ2
ν < 1.5. Compare these results with simulations of the stability of less-massive objects interior to planet e, shown in

Fig. 22.

Figure 25. Best-fitting orbits Va (1f:3e MMR), Vb (1f:3e MMR), Vc (1f:2e MMR), and Vd (1f:2e MMR) of planets e and hypothetical planet f. Orbital
positions of both planets at epochs 2010.0, 2011.0, and 2014.0 are marked with filled circles and labelled, accordingly. See also ephemeris Tables B2–B5.

even seen it first at the images. The predictions and ephemeris data
(Tables B2–B5) might be helpful to confirm or withdraw this
intriguing hypothesis.

5 DY NA M I C A L S TA B I L I T Y A N D N U M E R I C A L
SETUP

A marginal dynamical stability of HR 8799 system is a common
problem highlighted in the literature. Similarly to most papers
published so far, we solved numerically the Newtonian, N-body
equations of motion to track the dynamical evolution of particular
best-fitting solutions. The results of stability analysis in the same
dynamical framework may be then easily compared with the previ-
ous studies.

Planets and the host star in our numerical experiments are ap-
proximated by point masses. The estimated system age in the range
of [30, 160] Myr (Marois et al. 2010) is equivalent to [6, 32] × 104

orbital periods of the outermost planet. In such time-scales, the
short-term dynamics is governed by low-order MMRs. Our dynam-
ical model neglects the general relativity, as well as conservative
and dissipative tidal body–body interactions. Such perturbations
are scaled with large negative powers of semimajor axes (e.g. Mi-
gaszewski 2012, and references therein). We also do not include
tidal interactions of the planets with two remnant discs. In the re-
cent paper, Moore & Quillen (2013) show that the outer disc might
influence the system stability. However, their N-body four-planet
model is marginally stable only for a few Myr. We postpone a sim-
ilar study making use of updated initial conditions of the HR 8799
system to another work.
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Table 5. Osculating elements and masses for the best-fitting five-planet models. The stellar mass m0 = 1.56 M�. The osculating
epoch is 1998.83.

Model Planet
√

χ2
ν m (mJup) a (au) e I(deg) �(deg) ω (deg) M0 (deg)

f 6.218 270 7.393 497 0.093 498 162.267 947 143.405 566
e 7.620 773 15.809 728 0.153 788 290.348 791 328.757 318

Va d 1.176 7.818 042 26.006 470 0.124 417 25.542 107 243.667 749 215.954 602 49.813 246
c 8.749 394 39.680 175 0.049 666 272.353 696 142.869 706
b 4.585 532 68.187 050 0.016 927 253.022 770 279.634 792

f 4.959 466 7.454 967 0.113 033 51.797 812 23.180 967
e 7.785 460 15.466 841 0.170 185 290.256 931 322.820 611

Vb d 1.177 9.496 197 25.529 862 0.125 842 26.869 698 245.474 714 205.284 684 57.312 742
c 8.852 039 40.465 447 0.037 989 274.813 041 139.910 933
b 5.169 680 69.434 385 0.020 676 174.060 193 354.774 655

f 2.691 369 9.720 335 0.190 823 221.621 749 116.829 209
e 6.887 347 15.804 942 0.183 061 113.782 165 326.274 813

Vc d 1.169 8.425 855 25.747 574 0.144 288 27.627 645 59.952 718 35.857 501 50.193 242
c 9.448 184 39.984 360 0.061 401 93.794 336 145.271 020
b 7.707 015 69.811 606 0.027 531 17.258 200 338.762 294

f 4.197 927 9.659 082 0.177 303 201.043 842 80.245 495
e 6.698 260 15.660 910 0.168 239 290.074 917 324.850 32

Vd d 1.252 7.178 005 25.705 213 0.137 796 25.568 815 243.953 507 213.186 128 50.262 837
c 11.868 008 39.486 207 0.054 102 269.946 387 145.097 451
b 6.527 020 68.597 249 0.017 425 217.631 852 314.164 304

The conservative, Newtonian N-body model permits to introduce
at least two notions of the dynamical stability. The direct, long
term numerical integrations make it possible to investigate the La-
grange or astronomical stability. The astronomical stability may
be expressed by the event time TE of a collision between planets
(orbits crossing) or an ejection of a body from the system. The di-
rect 160 Myr integrations of the equations of motion for one initial
condition of five-planet system require CPU time counted in hours.
Such a significant CPU overhead is not suitable to illustrate the
global dynamics of the system.

Stability of planetary configurations may be also expressed
through the MLCE λ. The MLCE is a fundamental measure of
the divergence of initially close trajectories in the phase space. A
non-zero value of MLCE indicates a chaotic (unstable) system.
Chaotic motions in a regime of strong, low-order MMRs may lead
to short event times (e.g. Goździewski et al. 2008b). To compute
MLCE, we use an effective algorithm of the MEGNO 〈Y〉 Cincotta
& Simó (2000); Cincotta et al. (2003). A uniform definition of this
fast indicator describes two basic classes of motions in the phase
space:

lim
t→∞

〈Y (t)〉 = 1

2
λt + d,

where for the regular, stable quasi-periodic solutions λ = 0, d �
2, and for chaotic (unstable solutions) λ > 0 and d � 0. MLCE
measures the slope of linear function for the chaotic solutions,
hence an approximation of MLCE after time t:

λ(t) ∼ 2
〈Y (t)〉

t
.

This technique requires relatively short arcs of the phase space tra-
jectories, equivalent to a few of 104 orbital periods of the outermost
planet (characteristic periods; let us recall that 104 outermost orbital
periods of HR 8799 b translates to roughly 5 Myr). This makes it
possible to construct high-resolution dynamical maps in selected

planes of orbital parameters with much smaller CPU overhead than
required by the direct N-body integrations.

There is no simple nor uniform relation between the MLCE and
the event time. We performed a number of experiments to calibrate
a link between the MEGNO interval and the direct integration time.

To examine the dynamical stability of isolated best-fitting models
gathered in Figs 7, 8, 12, 14, and 16, we computed MEGNO for the
upper limit of the system age (160 Myr). To conserve the total energy
and angular momentum with the relative accuracy ∼10−9, we apply
the tangent map algorithm (Goździewski et al. 2008a) that makes use
of the fourth-order SABA4 symplectic integration scheme (Laskar
& Robutel 2001). Step sizes of the symplectic tangent mapping are
usually 256 or 384 d for the four-planet configurations and 128 or
256 d for the five-planet configurations. We verified these settings
with an accurate but 2–3 times less CPU-effective Bulirsh–Stoer–
Gragg scheme (the ODEX code; Hairer, Norsett & Wanner 1993).

A typical convergence of MEGNO indicating strictly quasi-
periodic best-fitting model IVa is shown in the left-hand panel of
Fig. 28. The right-hand panel compares two other solutions corre-
sponding to five-planet models Va and Vc, labelled with 1f:3e and
1f:2e, accordingly (see their orbital geometry in Fig. 25 and ele-
ments in Table 5). The MEGNO convergence of the 1f:3e solution
Va is similarly perfect for 100 Myr. This is not the case for the 1f:2e
MMR solution Vc. After ∼15–20 Myr, the indicator starts to grow
roughly on a linear rate indicating a weakly chaotic configuration.
The direct N-body integration shows that this system disrupts due
to crossing orbits after ∼120 Myr. This illustrates a well-known in-
stability due to secular interactions in multiple MMRs (e.g. Murray
& Holman 2001; Guzzo 2005; Goździewski et al. 2008a; Quillen
2011). A proper choice of the integration time to compute MLCE
is a delicate matter (Sussman & Wisdom 1992).

To resolve the structure of the phase space, and to measure the
width of MMRs, we computed a number of dynamical MEGNO
maps. The MEGNO integration time was set to ∼5–12 Myr, which
is equivalent to ∼10 000–25 000 characteristic periods. We carefully
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Multiple MMRs in the HR 8799 planetary system 3163

Figure 26. Dynamical maps 〈Y〉, in the semimajor–eccentricity plane for the best-fitting five-planet models including a hypothetical planet HR 8799 f. This
planet might be involved in the 1e:3f MMR, or in the 1f:2e MMR with planet HR 8799 e. The star symbol marks the best-fitting models in Table 5 (subsequent
plots are labelled accordingly), see also Fig. 25. Two upper right-hand panels are for close-ups of solutions Va and Vc with smallest

√
χ2

ν . The resolution of
all maps is 640 × 320 pixels. The integration time for each pixel is ∼20 000–30 000 orbital periods of the outermost planet (�10–15 Myr).

validated this choice. The MEGNO maps in the (ac, ec)-plane for
the best-fitting four-planets model IVa (Fig. 9), and the five-planet
models Va and Vc (Fig. 26) were compared with the event time
maps in Figs 29 and 30. In the MEGNO maps, similar to all such
maps in the text, stable, quasi-periodic solutions with 〈Y〉 � 2 are
always marked in blue. Yellow colour encodes strongly unstable

(chaotic) models with 〈Y〉 ≥ 5, as usually the integrations were
stopped if 〈Y〉 ≥ 5. Intermediate values of MEGNO between 2 and
5 correspond to chaotic solutions too.

For the event time maps in Fig. 29 (top-left panel) and Fig. 30, the
equations of motions were integrated for the maximum time span
of 160 Myr. Maps in the top-right and bottom-left panels of Fig. 29
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Figure 27. The orbital architecture of the HR 8799 system, in accord with
the best-fitting, coplanar, and long-term stable model Va of five planets
involved in the 1f:3e:6d:12e:24b MMR. This solution results in

√
χ2

ν =
1.176 and its osculating elements are given in Table 5. The new planet
would be in the 1e:3f MMR with HR 8799 e. Orbital positions of HR 8799
planets are shown for 160 Myr in the astrocentric coordinate frame, coplanar
with the orbits. The innermost green circle in the centre has the radius of
∼4 au and corresponds to the outer edge of the habitable zone in the HR
8799 system.

were integrated for longer intervals. In this way, three subsequent
panels in Fig. 29 are for gradually increased limit of the integration
time from 160 Myr (top-left panel), to 500 Myr (top-right panel)
and 1 Gyr (bottom-left panel). We may observe that the maximal
TE zone shrinks with the longer integration times. However, the
boundary of TE map for 1 Gyr perfectly matches the boundary
of quasi-periodic motions in the MEGNO map (see the top-right
panel in Fig. 9). This experiment assures us that initial conditions
of four-planet models identified with MEGNO as quasi-periodic for
time T ∼ 10 Myr (typical integration period of MEGNO) may be
safely considered as astronomically stable for ∼102T that translates

to ∼1 Gyr interval encompassing all current estimates of the HR
8799 lifetime. This estimate for five-planet systems might be too
optimistic; however, the MEGNO maps match at least the TE maps
computed for the maximal time of 160 Myr.

Remarkably, a single integration of symplectic MEGNO for
∼10–15 Myr takes roughly up to 10 min of CPU per initial con-
dition, depending on the N-body model, integrator, and the map-
ping step size. Even with such reasonable CPU overhead, a quasi-
global analysis of the dynamical stability still requires significant
CPU power which is inaccessible on a single workstation. For in-
stance, a single symplectic MEGNO map in the 720 × 360 res-
olution occupied up to 512 CPU cores for up to 1–2 days of
supercomputers chimera and cane installed in the Poznań Su-
percomputer Centre PCSS, Poland. To perform massive numerical
experiments in this work, we applied our new CPU cluster environ-
ment Mechanic (Słonina, Goździewski & Migaszewski 2014) and
simple codes written with the standard Message Passing Interface
(MPI).

6 C O N C L U S I O N S

The HR 8799 is one of most exotic and intriguing extrasolar plan-
etary systems detected so far. Any definite conclusion on its cur-
rent state suffers from ambiguities concerning its formation history,
age and companion masses. The astrometric data still cover only
tiny arcs of the orbits and are relatively inaccurate. To overcome
this problem, we invented new optimization algorithm constrained
through planetary migration (MCOA). This algorithm makes it
possible to derive a self-consistent dynamical model of the HR
8799 system perfectly matching all observations and independent
mass estimates. This model is rigorously stable for any estimate
of the star age, between 30 Myr and 1 Gyr. Our results are sug-
gestive for the formation of all HR 8799 planets in wider orbits
that migrated shortly to their observed orbits. Indeed, the signa-
tures of an extremely massive and dense protoplanetary disc re-
vealed by Spitzer observations, indicate both a rapid formation of
massive planets and their common migration. Moreover, the or-
bits are locked into an amazingly ordered chain of double Laplace
MMR 1e:2d:4c:8de. The mass ranges remain below the brown dwarf
limit and confirm dynamically the planetary nature of the HR 8799
companions.

False assumptions may yield correct conclusions. However, we
did not find any outcome of the MCOA that contradicts the results

Figure 28. Left-hand panel: a typical convergence of the MEGNO fast indicator to 2 for a regular, quasi-periodic configuration. The initial condition
corresponds to the best-fitting model IVa with four planets (Table 1). Right-hand panel: temporal evolution of MEGNO for the best-fitting five-planet models
Va and Vb. See the dynamical maps in Fig. 28 for a reference.
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Multiple MMRs in the HR 8799 planetary system 3165

Figure 29. Event time TE maps in the semimajor–eccentricity plane of planet HR 8799 c in the four-planet model IVa (Table 1). The maps are computed for
gradually increased integration time: top left – 160 Myr (∼3 × 105 outermost periods), top right – 500 Myr (∼106 outermost periods), bottom left – 1 Gyr
(∼2 × 106 outermost periods). The event time corresponds to orbit crossing or ejection a planet from the system and is colour-coded. Yellow colour encodes
configurations lifetime is longer than the integration interval. The best-fitting system IVa marked with the star symbol is locked deeply in the 1e:2d:4c:8b
MMR. The bottom-right panels shows the semi-amplitude of the critical angle librating around 0◦ in the exact resonance. The resolution of each map is
360 × 180 pixels.

of independent astrophysical theory. Moreover, our model of the
HR 8799 system predicts basically unique ephemeris of the four-
and five-planet configurations that might be verified shortly on the
observational basis. A re-analysis of earlier data in the discovery
paper (Marois et al. 2008) confirms the stability analysis in the
literature. We found that the Laplace MMR fully consistent with
the astrophysical mass estimates ∼10 mJup. The dynamically de-
termined inclination and nodal line of the system orbits closely
matches independent determination of the inclination and node of
the outer debris disc (Matthews et al. 2014).

We also demonstrate that MCOA is able to derive meaningful
orbital characterization of a resonant system on the basis of short-
interval data, essentially using a single-image detection. Our method
may be useful to characterize long-period, resonant systems with
massive planets detected by the direct imaging.

The migration mechanism and resonance trapping is likely re-
sponsible, although in quite smaller scale when concerning the
orbits and planetary masses, for creating multiple systems of super-
Earth planets discovered by the Kepler mission (Borucki & Koch
2011; Batalha 2013). A significant sample of Kepler systems in-

volving four and more planets are found very close to multiple
MMRs which might be also explained by a common, inward migra-
tion (Migaszewski, Goździewski & Słonina 2013, and references
therein).

The early dynamical models of the three-planet HR 8799 system
configurations indicated marginally stable, chaotic system. After
the discovery of the fourth planet, these models become apparently
even more unstable. In contrast, our new models derived with the
migration constraints, and comprising of even five giant planets are
suggestive for a completely ordered configuration which could be
stable forever, if no significant perturbations are introduced.

AC K N OW L E D G E M E N T S

Many thanks to Daniel Fabrycky for a review and comments that
improved this manuscript. This work was supported by the Polish
Ministry of Science and Higher Education, Grant N/N203/402739.
CM is a recipient of the stipend of the Foundation for Polish Sci-
ence (programme START, editions 2010 and 2011). This research
was supported by computational resources provided through the

MNRAS 440, 3140–3171 (2014)

 by guest on M
ay 18, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/
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Figure 30. Event time TE and critical angle θ maps in the semimajor axis–eccentricity plane for planet HR 8799 f in five-planet models Va (left-hand column)
and Vc (right-hand column). Top row: the event time corresponds to orbit crossing or ejection a planet from the system and is colour-coded. The resolution of
each map is 360 × 180 pixels. The maximal integration time for each pixel is 160 Myr (3.2 × 105 characteristic periods). Bottom row: semi-amplitude of the
critical angles θ1: 3: 6: 12: 24 = λf − 4λe + 2λd − λc + 2λb (which librates around 90◦, left) and θ1: 3: 6: 12: 24 = λf − 3λe + 3λd − 3λc + 2λb (which librates
around ≈15◦, right), respectively. The best-fitting systems Va and Vc are marked with the star symbol (see their elements in Table 5).
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Goździewski K., Migaszewski C., 2009, MNRAS, 397, L16
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A P P E N D I X A : C O M P I L AT I O N O F A S T RO M E T R I C DATA I N T H E L I T E R AT U R E

Table A1. Astrometric data in the literature for planet HR 8799 b (‘s’ stands for the arc second).

Epoch Planet b Reference Data set
N (s) E (s) D1 D2 D3 D4 D5

1998.83 1.411 ± 0.009 0.986 ± 0.009 Lafrenière et al. (2009) × – – – ×
1998.83 1.418 ± 0.022 1.004 ± 0.020 Soummer et al. (2011) × – – – ×
2002.54 1.481 ± 0.023 0.919 ± 0.017 Fukagawa et al. (2009) × – – – ×
2004.53 1.471 ± 0.005 0.884 ± 0.005 Marois et al. (2008) × × – – ×
2005.54 1.496 ± 0.005 0.856 ± 0.005 Currie et al. (2012) × – – – ×
2007.58 1.522 ± 0.003 0.815 ± 0.003 Metchev, Marois & Zuckerman (2009) × – – – ×
2007.81 1.512 ± 0.005 0.805 ± 0.005 Marois et al. (2008) × × – – ×
2008.52 1.527 ± 0.004 0.799 ± 0.004 Marois et al. (2008) × × – – ×
2008.61 1.527 ± 0.002 0.801 ± 0.002 Marois et al. (2008) × × × – ×
2008.71 1.528 ± 0.003 0.798 ± 0.003 Marois et al. (2008) × × – – ×
2008.89 1.532 ± 0.020 0.796 ± 0.020 Currie et al. (2011) × – – – ×
2008.89 1.542 ± 0.010 0.780 ± 0.014 Hinz et al. (2010) × – – – ×
2009.62 1.536 ± 0.010 0.785 ± 0.010 Currie et al. (2011) × – – – ×
2009.70 1.538 ± 0.030 0.777 ± 0.030 Currie et al. (2011) × – – – ×
2009.76 1.535 ± 0.020 0.816 ± 0.020 Bergfors et al. (2011) × – – – ×
2009.77 1.532 ± 0.007 0.783 ± 0.007 Currie et al. (2011) × – – × ×
2009.84 1.540 ± 0.019 0.800 ± 0.019 Galicher et al. (2011) × – – – ×
2010.83 1.546 ± 0.005 0.748 ± 0.005 Currie et al. (2012) × – – – ×
2011.79 1.579 ± 0.011 0.734 ± 0.011 Esposito et al. (2013) × – – – ×
2011.86 1.546 ± 0.011 0.725 ± 0.011 Esposito et al. (2013) × – – – ×
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Table A2. Astrometric data in the literature for planet HR 8799 c (‘s’ stands for the arc second).

Epoch Planet c Reference Data set
N (s) E (s) D1 D2 D3 D4 D5

1998.83 −0.837 ± 0.026 0.483 ± 0.023 Soummer et al. (2011) × – – – ×
2004.53 −0.739 ± 0.005 0.612 ± 0.005 Marois et al. (2008) × × – – ×
2005.54 −0.713 ± 0.005 0.630 ± 0.005 Currie et al. (2012) × – – – ×
2007.58 −0.672 ± 0.005 0.674 ± 0.005 Metchev et al. (2009) × – – – ×
2007.81 −0.674 ± 0.005 0.681 ± 0.005 Marois et al. (2008) × × – – ×
2008.52 −0.658 ± 0.004 0.701 ± 0.004 Marois et al. (2008) × × – – ×
2008.61 −0.657 ± 0.002 0.706 ± 0.002 Marois et al. (2008) × × × – ×
2008.71 −0.657 ± 0.003 0.706 ± 0.003 Marois et al. (2008) × × – – ×
2008.89 −0.654 ± 0.020 0.700 ± 0.020 Currie et al. (2011) × – – – ×
2008.89 −0.631 ± 0.015 0.671 ± 0.020 Hinz et al. (2010) × – – – ×
2009.02 −0.612 ± 0.030 0.665 ± 0.030 Hinz et al. (2010) × – – – ×
2009.70 −0.625 ± 0.020 0.725 ± 0.020 Hinz et al. (2010) × – – – ×
2009.70 −0.634 ± 0.030 0.697 ± 0.030 Currie et al. (2011) × – – – ×
2009.76 −0.636 ± 0.040 0.692 ± 0.040 Bergfors et al. (2011) × – – – ×
2009.77 −0.627 ± 0.007 0.716 ± 0.007 Currie et al. (2011) × – – × ×
2009.84 −0.630 ± 0.013 0.720 ± 0.013 Galicher et al. (2011) × – – – ×
2010.83 −0.598 ± 0.005 0.737 ± 0.005 Currie et al. (2012) × – – – ×
2011.79 −0.561 ± 0.010 0.752 ± 0.010 Esposito et al. (2013) × – – – ×
2011.86 −0.578 ± 0.010 0.767 ± 0.010 Esposito et al. (2013) × – – – ×

Table A3. Astrometric data in the literature for planet HR 8799 d (‘s’ stands for the arc second).

Epoch Planet d Reference Data set
N (s) E (s) D1 D2 D3 D4 D5

1998.83 0.133 ± 0.035 −0.533 ± 0.034 Soummer et al. (2011) × – – – ×
2005.54 − 0.087 ± 0.010 −0.578 ± 0.010 Currie et al. (2012) × – – – ×
2007.58 − 0.170 ± 0.008 −0.589 ± 0.008 Metchev et al. (2009) × – – – ×
2008.52 − 0.208 ± 0.004 −0.582 ± 0.004 Marois et al. (2008) × × – – ×
2008.61 − 0.216 ± 0.002 −0.582 ± 0.002 Marois et al. (2008) × × × – ×
2008.71 − 0.216 ± 0.003 −0.582 ± 0.003 Marois et al. (2008) × × – – ×
2008.89 − 0.217 ± 0.020 −0.608 ± 0.020 Currie et al. (2011) × – – – ×
2008.89 − 0.215 ± 0.021 −0.644 ± 0.013 Hinz et al. (2010) × – – – ×
2009.70 − 0.282 ± 0.030 −0.590 ± 0.030 Hinz et al. (2010) × – – – ×
2009.76 − 0.270 ± 0.070 −0.600 ± 0.070 Bergfors et al. (2011) × – – – ×
2009.77 − 0.241 ± 0.007 −0.586 ± 0.007 Currie et al. (2011) × – – × ×
2009.84 − 0.240 ± 0.014 −0.580 ± 0.014 Galicher et al. (2011) × – – – ×
2010.83 − 0.283 ± 0.005 −0.567 ± 0.005 Currie et al. (2012) × – – – ×
2011.79 − 0.299 ± 0.010 −0.563 ± 0.010 Esposito et al. (2013) × – – – ×
2011.86 − 0.320 ± 0.010 −0.549 ± 0.010 Esposito et al. (2013) × – – – ×

Table A4. Astrometric data in the literature for planet HR 8799 e (‘s’ stands for the arc second).

Epoch Planet e Reference Data set
N (s) E (s) D1 D2 D3 D4 D5

2009.58 −0.299 ± 0.019 −0.217 ± 0.019 Marois et al. (2010) × – – – –
2009.58 −0.303 ± 0.013 −0.209 ± 0.013 Marois et al. (2010) × – – – –
2009.77 −0.306 ± 0.007 −0.217 ± 0.007 Currie et al. (2011) × – – × –
2009.83 −0.304 ± 0.010 −0.196 ± 0.010 Marois et al. (2010) × – – – –
2010.53 −0.324 ± 0.008 −0.174 ± 0.008 Marois et al. (2010) × – – – –
2010.55 −0.324 ± 0.011 −0.175 ± 0.011 Marois et al. (2010) × – – – –
2010.83 −0.312 ± 0.010 −0.151 ± 0.010 Marois et al. (2010) × – – – –
2011.79 −0.326 ± 0.011 −0.119 ± 0.011 Esposito et al. (2013) × – – – –
2011.86 −0.382 ± 0.011 −0.127 ± 0.011 Esposito et al. (2013) × – – – –
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A P P E N D I X B : E P H E M E R I S O F T H E FO U R - A N D F I V E - P L A N E T M O D E L S

Table B1. Ephemeris of the best-fitting four-planet model IVa (1e:2d:4c:8b MMR) between epochs
1995.0 and 2020.0. Astrometric data in the [E, N]-plane (‘s’ stands for the arc second).

Epoch Planet e Planet d Planet c Planet b
�α (s) �δ (s) �α (s) �δ (s) �α (s) �δ (s) �α (s) �δ (s)

1995 0.3598 − 0.0464 0.3055 −0.4425 −0.9031 0.3842 1.3624 1.0481
1996 0.3395 − 0.0931 0.2712 −0.4679 −0.8894 0.4101 1.3764 1.0308
1997 0.3123 − 0.1380 0.2356 −0.4909 −0.8748 0.4356 1.3901 1.0133
1998 0.2785 − 0.1801 0.1989 −0.5117 −0.8596 0.4608 1.4035 0.9956
1999 0.2385 − 0.2181 0.1613 −0.5301 −0.8436 0.4856 1.4166 0.9778
2000 0.1930 − 0.2512 0.1229 −0.5460 −0.8269 0.5100 1.4293 0.9597
2001 0.1430 − 0.2783 0.0840 −0.5596 −0.8094 0.5340 1.4418 0.9416
2002 0.0895 − 0.2988 0.0448 −0.5706 −0.7913 0.5576 1.4539 0.9233
2003 0.0338 − 0.3118 0.0053 −0.5793 −0.7725 0.5807 1.4657 0.9048
2004 − 0.0228 − 0.3172 − 0.0341 −0.5854 −0.7530 0.6034 1.4773 0.8863
2005 − 0.0788 − 0.3147 − 0.0735 −0.5892 −0.7329 0.6256 1.4886 0.8676
2006 − 0.1329 − 0.3045 − 0.1125 −0.5906 −0.7121 0.6473 1.4995 0.8488
2007 − 0.1838 − 0.2871 − 0.1511 −0.5896 −0.6906 0.6685 1.5102 0.8299
2008 − 0.2304 − 0.2630 − 0.1891 −0.5864 −0.6686 0.6892 1.5207 0.8108
2009 − 0.2718 − 0.2330 − 0.2264 −0.5809 −0.6459 0.7092 1.5308 0.7916
2010 − 0.3073 − 0.1980 − 0.2628 −0.5733 −0.6226 0.7287 1.5407 0.7723
2011 − 0.3366 − 0.1589 − 0.2983 −0.5636 −0.5987 0.7476 1.5504 0.7529
2012 − 0.3592 − 0.1168 − 0.3327 −0.5519 −0.5743 0.7659 1.5597 0.7334
2013 − 0.3751 − 0.0724 − 0.3659 −0.5383 −0.5494 0.7835 1.5688 0.7137
2014 − 0.3844 − 0.0268 − 0.3979 −0.5228 −0.5239 0.8005 1.5777 0.6939
2015 − 0.3871 0.0193 − 0.4284 −0.5056 −0.4979 0.8168 1.5862 0.6740
2016 − 0.3837 0.0651 − 0.4576 −0.4866 −0.4715 0.8324 1.5945 0.6539
2017 − 0.3743 0.1098 − 0.4852 −0.4661 −0.4446 0.8472 1.6026 0.6337
2018 − 0.3594 0.1530 − 0.5112 −0.4441 −0.4173 0.8614 1.6103 0.6134
2019 − 0.3393 0.1940 − 0.5356 −0.4207 −0.3896 0.8747 1.6178 0.5929
2020 − 0.3146 0.2323 − 0.5582 −0.3960 −0.3616 0.8874 1.6249 0.5723

Table B2. Ephemeris of the best-fitting five-planet model Va (1f:3e MMR). Epochs between 1995.0 and 2020.0. Astrometric
coordinates in the [E, N]-plane (‘s’ stands for the arc second).

Epoch Planet f Planet e Planet d Planet c Planet b
�α (s) �δ (s) �α (s) �δ (s) �α (s) �δ (s) �α (s) �δ (s) �α (s) �δ (s)

1995 0.1595 − 0.0585 0.3625 − 0.0384 0.3076 −0.4439 −0.9050 0.3826 1.3646 1.0480
1996 0.1203 − 0.1197 0.3421 − 0.0857 0.2732 −0.4693 −0.8912 0.4083 1.3785 1.0305
1997 0.0625 − 0.1626 0.3148 − 0.1312 0.2373 −0.4925 −0.8767 0.4337 1.3920 1.0129
1998 − 0.0042 − 0.1829 0.2806 − 0.1739 0.2003 −0.5132 −0.8615 0.4589 1.4051 0.9951
1999 − 0.0703 − 0.1798 0.2402 − 0.2126 0.1624 −0.5316 −0.8456 0.4837 1.4179 0.9773
2000 − 0.1281 − 0.1551 0.1941 − 0.2463 0.1238 −0.5474 −0.8289 0.5083 1.4304 0.9595
2001 − 0.1709 − 0.1122 0.1434 − 0.2739 0.0847 −0.5608 −0.8114 0.5325 1.4427 0.9415
2002 − 0.1937 − 0.0563 0.0891 − 0.2946 0.0454 −0.5717 −0.7932 0.5564 1.4548 0.9234
2003 − 0.1931 0.0065 0.0325 − 0.3078 0.0059 −0.5801 −0.7742 0.5798 1.4667 0.9053
2004 − 0.1676 0.0683 − 0.0247 − 0.3131 − 0.0335 −0.5862 −0.7544 0.6027 1.4783 0.8869
2005 − 0.1185 0.1203 − 0.0813 − 0.3104 − 0.0727 −0.5898 −0.7339 0.6251 1.4898 0.8685
2006 − 0.0510 0.1534 − 0.1357 − 0.2998 − 0.1116 −0.5912 −0.7127 0.6470 1.5011 0.8498
2007 0.0251 0.1599 − 0.1867 − 0.2820 − 0.1499 −0.5903 −0.6908 0.6682 1.5121 0.8309
2008 0.0963 0.1361 − 0.2333 − 0.2575 − 0.1877 −0.5873 −0.6682 0.6888 1.5228 0.8117
2009 0.1485 0.0854 − 0.2746 − 0.2272 − 0.2249 −0.5822 −0.6452 0.7087 1.5331 0.7923
2010 0.1714 0.0179 − 0.3099 − 0.1919 − 0.2613 −0.5750 −0.6216 0.7280 1.5431 0.7727
2011 0.1626 − 0.0531 − 0.3389 − 0.1527 − 0.2969 −0.5658 −0.5976 0.7466 1.5527 0.7530
2012 0.1260 − 0.1153 − 0.3613 − 0.1105 − 0.3316 −0.5545 −0.5732 0.7647 1.5619 0.7332
2013 0.0701 − 0.1600 − 0.3771 − 0.0662 − 0.3651 −0.5413 −0.5483 0.7821 1.5708 0.7133
2014 0.0044 − 0.1827 − 0.3863 − 0.0206 − 0.3975 −0.5261 −0.5229 0.7990 1.5794 0.6934
2015 − 0.0619 − 0.1823 − 0.3890 0.0254 − 0.4285 −0.5091 −0.4971 0.8153 1.5877 0.6734
2016 − 0.1210 − 0.1600 − 0.3856 0.0711 − 0.4580 −0.4903 −0.4707 0.8309 1.5957 0.6534
2017 − 0.1659 − 0.1191 − 0.3764 0.1158 − 0.4859 −0.4698 −0.4439 0.8460 1.6035 0.6334
2018 − 0.1915 − 0.0643 − 0.3617 0.1589 − 0.5122 −0.4478 −0.4166 0.8603 1.6111 0.6132
2019 − 0.1939 − 0.0017 − 0.3420 0.1998 − 0.5368 −0.4244 −0.3888 0.8739 1.6185 0.5929
2020 − 0.1713 0.0610 − 0.3178 0.2381 − 0.5596 −0.3996 −0.3605 0.8868 1.6257 0.5726
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Table B3. Ephemeris of best-fitting five-planet model Vb (1f:3e MMR) between epochs 1995.0 and 2020.0. Astrocentric coordinates
in the [E, N]-plane (‘s’ stands for the arc second).

Epoch Planet f Planet e Planet d Planet c Planet b
�α (s) �δ (s) �α (s) �δ (s) �α (s) �δ (s) �α (s) �δ (s) �α (s) �δ (s)

1995 − 0.1281 − 0.1244 0.3684 0.0086 0.3078 −0.4348 −0.9060 0.3909 1.3609 1.0443
1996 − 0.1616 − 0.0642 0.3529 − 0.0392 0.2733 −0.4601 −0.8920 0.4164 1.3749 1.0275
1997 − 0.1645 0.0080 0.3303 − 0.0861 0.2376 −0.4832 −0.8772 0.4417 1.3886 1.0105
1998 − 0.1339 0.0784 0.3006 − 0.1311 0.2009 −0.5040 −0.8615 0.4666 1.4021 0.9933
1999 − 0.0754 0.1325 0.2638 − 0.1731 0.1633 −0.5225 −0.8451 0.4910 1.4154 0.9759
2000 − 0.0017 0.1604 0.2205 − 0.2109 0.1251 −0.5388 −0.8279 0.5150 1.4285 0.9583
2001 0.0725 0.1595 0.1714 − 0.2432 0.0863 −0.5528 −0.8100 0.5385 1.4412 0.9404
2002 0.1354 0.1333 0.1176 − 0.2689 0.0470 −0.5644 −0.7915 0.5615 1.4536 0.9223
2003 0.1796 0.0884 0.0603 − 0.2871 0.0076 −0.5738 −0.7724 0.5840 1.4656 0.9041
2004 0.2014 0.0323 0.0013 − 0.2971 − 0.0320 −0.5807 −0.7527 0.6060 1.4773 0.8856
2005 0.2000 − 0.0275 − 0.0579 − 0.2986 − 0.0715 −0.5854 −0.7324 0.6276 1.4886 0.8670
2006 0.1766 − 0.0843 − 0.1154 − 0.2916 − 0.1108 −0.5877 −0.7115 0.6487 1.4995 0.8483
2007 0.1340 − 0.1320 − 0.1699 − 0.2767 − 0.1497 −0.5877 −0.6901 0.6693 1.5101 0.8295
2008 0.0766 − 0.1649 − 0.2199 − 0.2544 − 0.1881 −0.5854 −0.6682 0.6894 1.5204 0.8106
2009 0.0101 − 0.1782 − 0.2644 − 0.2258 − 0.2258 −0.5809 −0.6456 0.7090 1.5304 0.7917
2010 − 0.0575 − 0.1683 − 0.3028 − 0.1919 − 0.2627 −0.5742 −0.6225 0.7281 1.5401 0.7727
2011 − 0.1166 − 0.1337 − 0.3345 − 0.1537 − 0.2986 −0.5655 −0.5988 0.7468 1.5496 0.7537
2012 − 0.1560 − 0.0769 − 0.3592 − 0.1123 − 0.3334 −0.5547 −0.5745 0.7649 1.5589 0.7346
2013 − 0.1660 − 0.0058 − 0.3771 − 0.0687 − 0.3670 −0.5420 −0.5496 0.7824 1.5680 0.7154
2014 − 0.1422 0.0662 − 0.3881 − 0.0239 − 0.3993 −0.5274 −0.5241 0.7992 1.5769 0.6961
2015 − 0.0889 0.1246 − 0.3927 0.0212 − 0.4301 −0.5113 −0.4980 0.8154 1.5856 0.6766
2016 − 0.0178 0.1583 − 0.3912 0.0660 − 0.4595 −0.4935 −0.4715 0.8308 1.5942 0.6569
2017 0.0567 0.1637 − 0.3840 0.1097 − 0.4874 −0.4743 −0.4445 0.8454 1.6024 0.6370
2018 0.1225 0.1431 − 0.3715 0.1519 − 0.5138 −0.4537 −0.4171 0.8593 1.6103 0.6169
2019 0.1713 0.1023 − 0.3543 0.1920 − 0.5387 −0.4318 −0.3894 0.8724 1.6179 0.5965
2020 0.1986 0.0486 − 0.3328 0.2298 − 0.5620 −0.4086 −0.3614 0.8846 1.6251 0.5761

Table B4. Ephemeris for the best-fitting five-planet model Vc (1e:2f MMR) between epochs 1995.0 and 2020.0. Astrocentric coordinates in the [E, N]-plane
(‘s’ stands for the arc second).

Epoch Planet f Planet e Planet d Planet c Planet b
�α (s) �δ (s) �α (s) �δ (s) �α (s) �δ (s) �α (s) �δ (s) �α (s) �δ (s)

1995 0.0211 0.2113 0.3653 0.0044 0.3072 −0.4169 −0.9002 0.3883 1.3692 1.0467
1996 0.0856 0.2149 0.3483 − 0.0436 0.2732 −0.4439 −0.8862 0.4139 1.3828 1.0296
1997 0.1442 0.2034 0.3242 − 0.0907 0.2379 −0.4688 −0.8716 0.4390 1.3961 1.0123
1998 0.1942 0.1795 0.2931 − 0.1358 0.2013 −0.4913 −0.8562 0.4639 1.4091 0.9948
1999 0.2337 0.1461 0.2552 − 0.1778 0.1637 −0.5115 −0.8402 0.4883 1.4217 0.9771
2000 0.2621 0.1056 0.2109 − 0.2154 0.1253 −0.5293 −0.8236 0.5123 1.4340 0.9592
2001 0.2788 0.0603 0.1610 − 0.2474 0.0864 −0.5447 −0.8063 0.5360 1.4460 0.9412
2002 0.2838 0.0126 0.1068 − 0.2727 0.0470 −0.5576 −0.7883 0.5592 1.4577 0.9230
2003 0.2774 − 0.0357 0.0496 − 0.2904 0.0074 −0.5681 −0.7698 0.5820 1.4690 0.9046
2004 0.2599 − 0.0825 − 0.0091 − 0.2997 − 0.0322 −0.5761 −0.7506 0.6044 1.4801 0.8862
2005 0.2319 − 0.1260 − 0.0675 − 0.3006 − 0.0717 −0.5818 −0.7308 0.6263 1.4908 0.8676
2006 0.1941 − 0.1642 − 0.1241 − 0.2931 − 0.1109 −0.5850 −0.7104 0.6478 1.5012 0.8488
2007 0.1478 − 0.1952 − 0.1773 − 0.2777 − 0.1497 −0.5859 −0.6895 0.6688 1.5113 0.8300
2008 0.0945 − 0.2167 − 0.2258 − 0.2550 − 0.1879 −0.5845 −0.6680 0.6893 1.5212 0.8111
2009 0.0361 − 0.2266 − 0.2689 − 0.2261 − 0.2254 −0.5809 −0.6459 0.7093 1.5307 0.7920
2010 − 0.0244 − 0.2229 − 0.3058 − 0.1920 − 0.2621 −0.5752 −0.6232 0.7287 1.5400 0.7728
2011 − 0.0831 − 0.2036 − 0.3360 − 0.1538 − 0.2979 −0.5673 −0.6001 0.7477 1.5490 0.7536
2012 − 0.1350 − 0.1677 − 0.3596 − 0.1124 − 0.3325 −0.5574 −0.5763 0.7660 1.5578 0.7342
2013 − 0.1739 − 0.1160 − 0.3764 − 0.0690 − 0.3660 −0.5456 −0.5521 0.7838 1.5663 0.7147
2014 − 0.1939 − 0.0518 − 0.3867 − 0.0244 − 0.3982 −0.5320 −0.5274 0.8010 1.5745 0.6951
2015 − 0.1907 0.0186 − 0.3907 0.0206 − 0.4291 −0.5166 −0.5022 0.8176 1.5826 0.6754
2016 − 0.1641 0.0866 − 0.3888 0.0654 − 0.4585 −0.4995 −0.4765 0.8335 1.5903 0.6556
2017 − 0.1180 0.1445 − 0.3813 0.1092 − 0.4864 −0.4809 −0.4503 0.8487 1.5978 0.6356
2018 − 0.0591 0.1869 − 0.3688 0.1515 − 0.5128 −0.4609 −0.4238 0.8632 1.6051 0.6155
2019 0.0055 0.2118 − 0.3515 0.1919 − 0.5376 −0.4394 −0.3968 0.8770 1.6121 0.5952
2020 0.0698 0.2197 − 0.3300 0.2300 − 0.5608 −0.4167 −0.3696 0.8900 1.6187 0.5747
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Table B5. Ephemeris of the best-fitting five-planet model Vd (1f:2e MMR) between epochs 1995.0 and 2020.0. Astrometric coordinates in the [E, N]-plane
(‘s’ stands for the arc second).

Epoch Planet f Planet e Planet d Planet c Planet b
�α (s) �δ (s) �α (s) �δ (s) �α (s) �δ (s) �α (s) �δ (s) �α (s) �δ (s)

1995 0.1761 − 0.0811 0.3686 0.0002 0.3100 −0.4290 −0.9033 0.3851 1.3574 1.0459
1996 0.1356 − 0.1404 0.3528 − 0.0480 0.2757 −0.4554 −0.8895 0.4109 1.3714 1.0285
1997 0.0812 − 0.1856 0.3297 − 0.0952 0.2399 −0.4795 −0.8750 0.4364 1.3851 1.0110
1998 0.0196 − 0.2145 0.2996 − 0.1404 0.2030 −0.5013 −0.8598 0.4615 1.3984 0.9933
1999 − 0.0436 − 0.2269 0.2625 − 0.1823 0.1650 −0.5205 −0.8438 0.4863 1.4115 0.9755
2000 − 0.1040 − 0.2243 0.2190 − 0.2197 0.1263 −0.5373 −0.8271 0.5108 1.4242 0.9575
2001 − 0.1583 − 0.2085 0.1700 − 0.2515 0.0870 −0.5516 −0.8096 0.5348 1.4367 0.9395
2002 − 0.2044 − 0.1817 0.1164 − 0.2767 0.0474 −0.5634 −0.7915 0.5584 1.4488 0.9212
2003 − 0.2406 − 0.1461 0.0596 − 0.2942 0.0075 −0.5727 −0.7727 0.5817 1.4607 0.9029
2004 − 0.2660 − 0.1039 0.0012 − 0.3036 − 0.0323 −0.5795 −0.7531 0.6044 1.4724 0.8845
2005 − 0.2798 − 0.0573 − 0.0572 − 0.3045 − 0.0720 −0.5838 −0.7329 0.6267 1.4837 0.8659
2006 − 0.2818 − 0.0081 − 0.1141 − 0.2971 − 0.1114 −0.5858 −0.7120 0.6485 1.4948 0.8472
2007 − 0.2718 0.0414 − 0.1678 − 0.2816 − 0.1503 −0.5854 −0.6904 0.6697 1.5057 0.8283
2008 − 0.2499 0.0891 − 0.2172 − 0.2589 − 0.1885 −0.5827 −0.6682 0.6905 1.5163 0.8094
2009 − 0.2166 0.1327 − 0.2612 − 0.2298 − 0.2260 −0.5778 −0.6453 0.7106 1.5267 0.7903
2010 − 0.1727 0.1697 − 0.2991 − 0.1953 − 0.2627 −0.5708 −0.6218 0.7301 1.5368 0.7710
2011 − 0.1195 0.1976 − 0.3303 − 0.1566 − 0.2983 −0.5617 −0.5977 0.7490 1.5466 0.7516
2012 − 0.0591 0.2136 − 0.3547 − 0.1146 − 0.3329 −0.5506 −0.5731 0.7672 1.5562 0.7320
2013 0.0052 0.2150 − 0.3722 − 0.0705 − 0.3663 −0.5377 −0.5479 0.7848 1.5656 0.7122
2014 0.0689 0.1994 − 0.3830 − 0.0251 − 0.3984 −0.5229 −0.5223 0.8016 1.5746 0.6923
2015 0.1263 0.1658 − 0.3872 0.0207 − 0.4291 −0.5064 −0.4961 0.8177 1.5834 0.6722
2016 0.1706 0.1152 − 0.3853 0.0662 − 0.4585 −0.4884 −0.4696 0.8331 1.5918 0.6519
2017 0.1955 0.0516 − 0.3775 0.1106 − 0.4864 −0.4687 −0.4426 0.8477 1.5999 0.6314
2018 0.1972 − 0.0181 − 0.3644 0.1534 − 0.5128 −0.4476 −0.4153 0.8616 1.6077 0.6108
2019 0.1759 − 0.0858 − 0.3464 0.1941 − 0.5376 −0.4251 −0.3877 0.8747 1.6151 0.5901
2020 0.1353 − 0.1442 − 0.3239 0.2323 − 0.5608 −0.4012 −0.3598 0.8871 1.6222 0.5693
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