
MNRAS 480, 1767–1777 (2018) doi:10.1093/mnras/sty1972
Advance Access publication 2018 July 23

A periodic configuration of the Kepler-25 planetary system

Cezary Migaszewski‹ and Krzysztof Goździewski‹
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ABSTRACT
We study proximity of the Kepler-25 planetary system to a periodic configuration, which is
known to be the final state of a system that undergoes smooth migration resulting from the
planet–disc interaction. We show that the system is close to the periodic configuration of 2:1
mean motion resonance (MMR) what indicates that its past migration was neither disturbed
significantly by turbulence in the disc nor the orbits were perturbed by planetesimals that were
left after the disc dispersal. We show that, because of the transit timing variations (TTVs) model
degeneracy, a periodic configuration is difficult to be found when the standard modelling of
the TTVs is used. The TTV signal of a periodic configuration (with anti-aligned apsidal lines)
may be misinterpreted as an aligned non-resonant system. We demonstrate that the standard
Markov Chain Monte Carlo (MCMC) modelling of the Kepler-25 TTVs is very sensitive to an
a priori information on the eccentricities (prior probability distributions). Wide priors (of the
order of the ones typically used in the literature) result in favouring the aligned non-resonant
configurations with small planets’ masses and moderate eccentricities, while for the narrower
priors the most likely are the anti-aligned resonant systems with larger masses and very low
eccentricities.

Key words: planets and satellites: dynamical evolution and stability – planet–disc interac-
tions – planets and satellites: fundamental parameters.

1 IN T RO D U C T I O N

It is known that a periodic configuration (in a reference frame co-
rotating with the apsidal lines) is one of the possible outcomes of
the smooth disc-induced migration of a two-planet system (Had-
jidemetriou 2006; Migaszewski 2015). The migration can be alter-
nately convergent or divergent during the whole lifetime of the disc.
Depending on particular history of the migration, the final period
ratio P2/P1 (where P1, P2 are the orbital periods of the inner and
the outer planet, respectively) may be close to a nominal value of a
particular mean motion resonance (e.g. 2/1, 3/2, 4/3, etc.) or shifted
away from such a value. The proximity of the final system to the
periodic configuration is, however, not related to the final period
ratio. The system may have P2/P1 very distant from the resonant
value but still be a periodic configuration, i.e. be resonant in terms
of the resonant angles librations.

Nevertheless, as mentioned above, the periodic configuration is
not the only possible result of the migration. The system can deviate
from periodicity if the migration is too rapid (i.e. the evolution is
non-adiabatic) or if the system passes through the resonance. The
latter may happen if the migration is divergent or if the resonance
captured is only temporary, i.e. librations around the periodic con-
figuration (an equilibrium in the averaged model of the resonance)
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are overstable (Goldreich & Schlichting 2014). It is also possible
that the amplitude of the librations saturates at a non-zero value,
resulting in a resonant system that is shifted away from the peri-
odic configuration (Goldreich & Schlichting 2014; Deck & Batygin
2015). Although, in general, the migration does not necessarily lead
to the periodic configuration, a system that is close to periodic has
been likely formed on the way of migration.

This work is related to the problem of explaining the observed
period ratio distribution of the KEPLER systems (Fabrycky et al.
2014). Only small fraction of multiplanet systems have P2/P1 close
to resonant values. There are several explanations of how a given
resonant pair moved away from the resonance. They may be divided
into two groups. In the scenarios from the first group the system is
being moved away from the resonance because of perturbations re-
sulting from remnant planetesimals (Rein 2012; Chatterjee & Ford
2015 ) or the interaction with a turbulent disc (Nelson 2005). In the
scenarios from the second group the migration is smooth (i.e. not
disturbed by the forces mentioned above) but not necessarily con-
vergent during the whole evolution of the system. The divergence
of the migration may result from particular physical conditions in
an evolving disc (Migaszewski 2015) or from the tidal star–planet
interaction (Papaloizou & Terquem 2010; Papaloizou 2011; Baty-
gin & Morbidelli 2013; Delisle & Laskar 2014; Delisle, Laskar &
Correia 2014). The latter mechanism acts, however, only for very
short-period planets (P ∼ 1 day). Another mechanism that can be
counted to this group has been recently proposed (Ramos et al.
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2017). They show that the equilibrium values of the period ratio of
two short-period planets may differ significantly from the nominal
resonant values if a disc in which they migrated has a small aspect
ratio and is significantly flared. Charalambous et al. (2017) studied
the Kepler-25 system with two transiting planets (discovered by the
Kepler mission; Steffen et al. 2012) in this context, and showed that
its period ratio of 2.039 may result from the migration in the disc
of properties suggested by Ramos et al. (2017).

The first group scenarios result in not only the P2/P1 deviation
from the resonant value but also in the deviation of the system from
the periodic configuration. As discussed in (Rein & Papaloizou
2009) stochastic forces acting on a planet affects both the semimajor
axis a and the eccentricity e in similar magnitude. That means that
if the Kepler-25 with P2/P1 ≈ 2.039 was shifted away from the 2:1
mean motion resonance (MMR) by such forces, the variation of
the eccentricities should be � 0.01, which is far from the periodic
system, as e1 ∼ 10−3 and e2 ∼ 10−4 for the periodic configuration
of P2/P1 = 2.039 and the planets’ masses in super-Earths regime
(as the measured planets’ radii, R1 = (2.64 ± 0.04) R⊕ and R2 =
(4.51 ± 0.08) R⊕ suggest; Rowe et al. 2015). (We use the indices of
1 and 2 for the inner and the outer planet, instead of b and c.) That
means that the Kepler-25 system is a good tester of the migration
as a formation mechanism of configurations with P2/P1 relatively
close to (but not exactly at) the resonant values.

This work is organized as follows. In Section 2 we study branches
of periodic configurations as a function of the planets’ masses m1,
m2 (for the inner and the outer planets, respectively) and the period
ratio. As the eccentricities e1, e2 depend on m1, m2, P2/P1 and
the transit timing variations (TTVs) amplitudes depend on e1, e2,
we show that it is possible to constrain the masses of the Kepler-25
system, when assuming a periodic configuration of this system. The
periodic configuration fitting procedure is presented in Section 3.
In the next section, we try to verify whether or not a system which
is far from a periodic configuration may be misinterpreted as a
periodic system, when applying the procedure explained in Section
3. On the other hand, in Section 5 we try to find out if a periodic
configuration may be misinterpreted as far form periodic when
applying the standard TTV fitting procedure. The last section is
devoted to summary and conclusions.

2 MI G R AT I O N A N D P E R I O D I C
C O N F I G U R AT I O N S

Families of periodic orbits of two-planet systems has been widely
studied for different MMRs and in a wide range of planets’ masses
(e.g. Hadjidemetriou & Christides 1975; Hadjidemetriou 2006; An-
toniadou & Voyatzis 2014). Their connection with the migration has
been also pointed out (e.g. Beaugé, Michtchenko & Ferraz-Mello
2006; Hadjidemetriou & Voyatzis 2010; Migaszewski 2015). Fur-
ther in this work we show the connection between the periodic
configurations and the TTVs.

When using the averaging approach to the resonant two-planet
system (e.g. Beaugé & Michtchenko 2003), a periodic configuration
corresponds to an equilibrium in a reference frame co-rotating with
the apsidal lines. For a stable equilibrium (which is the case we
are interested in) the eccentricities, semimajor axes, the difference
of the longitudes of pericentres (�� = � 1 − � 2, where � i is
the longitude of the ith planet’s pericentre) and the resonant angles
are constant. The individual � i, on contrary, vary linearly in time.
The so-called free eccentricities of a system in an equilibrium equal
zero and the apsidal lines rotate with a period that equals the so-

called super-period (Lithwick, Xie & Wu 2012), Tq = |q/P1 − (q +
1)/P2|−1, for the (q + 1):q resonance.

From the observational point of view, a uniformly rotating orbit
of given (and fixed) a and e should lead to a periodic signal in TTV,
as an actual orientation of the orbit determines whether the transit
occurs earlier or later than it stems from the Keplerian motion of
the planet. As the true anomaly ν may be expressed for e � 1
by the mean anomaly M as ν ≈ M + 2e sinM (e.g. Brouwer &
Clemence 1961), the TTV should be sinusoidal (for low e) with
a semi-amplitude A that depends on e through the relation A/P =
(2e)/(2π ). If the orbits of a periodic two-planet configuration are
anti-aligned, �� = π , the TTV signals for the planets should be in
antiphase. If the orbits are aligned, �� = 0, the signals are in phase,
while for �� different from 0 or π (the asymmetric co-rotation,
e.g. Beaugé, Ferraz-Mello & Michtchenko 2003) the difference in
phases of the signals are neither 0 nor π .

As the amplitudes of TTV depend on the eccentricities, a
natural question arises on how the eccentricities of periodic
configurations depend on planets’ masses. Fig. 1 presents
branches (families) of periodic orbits obtained for different m1,
m2 in certain range of P2/P1 > 2. The procedure of finding
periodic orbits is the following (e.g. Migaszewski, Goździewski
& Panichi 2017). For given masses we search for such ppp =
(a1 cosM1, a1 sinM1, a2 cosM2, a2 sinM2, e1 cos ��, e1 sin
��, e2) that satisfies δ = 0, where δ ≡ ‖ppp(t = T ) − ppp(t = 0)‖,
and T is the period.

For 2:1 MMR the period T corresponds to one revolution of the
outer planet and two revolutions of the inner planet. The stable
equilibrium (when we use the averaged model of the resonance) of
2:1 MMR in a regime of small eccentricities exist for �� = π and
values of the resonant angles depend on P2/P1. For P2/P1 > 2 the
angles defined as φ1 ≡ λ1 − 2λ2 + � 1 and φ2 ≡ λ1 − 2λ2 + � 2

(where λi ≡ Mi + �i is the mean longitude of ith planet) equal 0
and π , respectively, while for P2/P1 < 2, φ1 = π and φ2 = 0. The
Kepler-25 system has P2/P1 = 2.039, thus we will consider only
the first case. Naturally, saying that the equilibrium of the averaged
system corresponds to �� = π and φ1 = 0 means that for the
unaveraged system �� and φ1 oscillate around those values. The
amplitudes of the oscillations depend on the distance of P2/P1 to the
resonant values of particular resonance (Migaszewski 2015). The
closer P2/P1 is to the nominal value of given MMR, the smaller are
the amplitudes.

When searching for a periodic configuration one needs to set
initial values of the mean anomalies, such that �� = π and φ1

= 0. There are two combinations of (M1,M2) that satisfy the
condition, i.e. (0, 0) and (0, π ). The results presented in Fig. 1 were
obtained for the former choice of the mean anomalies. When the
angles M1,M2,�� are set, we search for ppp(t = 0) that gives δ

= 0 in the parameter space of (P2/P1, e1, e2). As it is known (e.g.
Hadjidemetriou 2006) there exists a curve satisfying δ = 0. In the
regime of (P2/P1, e1, e2), that we are interested in, the curve can be
parametrized with P2/P1, i.e. e1 = e1(P2/P1) and e2 = e2(P2/P1).
Therefore, in order to find a family of periodic configurations one
needs to search for δ(e1, e2) = 0 for a series of values of P2/P1 in a
given range. The equation δ(e1, e2) = 0 is being solved numerically
with a help of the Powell’s method combined with the golden section
(e.g. Press et al. 2002).

Fig. 1(a) presents the families of periodic orbits obtained for
P2/P1 ∈ (2, 2.09] and for various m1, m2 with their ratio kept con-
stant, m1/m2 = 1. Each curve, presented in the (P2/P1, e1)-plane
corresponds to different value of m1 + m2. When the masses are
lower, e1 (and similarly e2) are lower for given P2/P1. The pe-
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Figure 1. Branches of periodic configurations for different planets’ masses
(the mass of the star is fixed at the value corresponding to Kepler-25, i.e.
m0 = 1.19 M
). Panel (a) presents the results for fixed mass ratio (equal
1) and different m1 + m2 (the values vary from 10 M⊕ to 40 M⊕, with a
5 M⊕ increment) at a plane of (P2/P1, e1). Panel (b) shows the results at
the eccentricities plane obtained for a fixed sum of the masses and the ratio
m1/m2 being varied in a range of (0.25, 4). Big grey dots indicate (P2/P1)
= 2.039 that corresponds to the Kepler-25 system. Panel (c) illustrates the
period of the TTV signal, T(O-C), as a function of the orbital period ratio
computed for periodic configurations of both the planets’ masses in a range
of [5, 30] M⊕. An analytic estimate of T(O-C), the super-period, is shown
with a dashed curve. The circle symbol indicate the position of the Kepler-
25 system at the plot.

riod ratio value of Kepler-25, P2/P1 = 2.039, is marked with large
grey dots. Panel (b) of Fig. 1 presents the branches of periodic
configurations in the eccentricities plane. Here, the sum of the
masses is fixed, while the ratio varies. Clearly, when m1/m2 in-
creases (for a given P2/P1) e1 decreases, while e2 increases.

As Ai∝ei, by repeating the analysis for different m1, m2 one can
find an approximate relation between the amplitudes A1, A2 and the
masses, i.e. Ai = Ai(m1, m2; P2/P1). Roughly speaking, A1∝m2 and
A2∝m1 in a regime of small masses. Therefore, it should be possible,
in principle, to constrain the planets’ masses by fitting the model
of a periodic configuration to the TTV data (naturally, if the real
system is close-to-periodic, what we demonstrate later in this work).
The fitting procedure is presented in the next section.

In contrast with the amplitudes dependence on the planets’
masses, a period of the rotation of the system as a whole [that
equals to the (O-C)-signal period, T(O-C)] does not depend on the
masses significantly (in a small mass regime). Fig. 1(c) presents
T(O-C) as a function of P2/P1 for periodic configurations found for
the masses in a range of [5, 30] M⊕. We note that the T(O-C) de-
pendence on the period ratio agrees with the analytic model of
Lithwick et al. (2012), i.e. the super-period, that equals |1/P1 −
2/P2|−1 for the 2:1 MMR (the analytic prediction is marked with a
dashed curve in Fig. 1c). The Kepler-25 system, whose position at
the plot is marked with a circle symbol, lies exactly at the curve cor-
responding to the families of periodic configurations. Nevertheless,
the agreement between T(O-C) of Kepler-25 and the super-period
does not mean that the system has to be a periodic configuration,
as the super-period corresponds to the variation of the longitude of
conjunction (Lithwick et al. 2012).

3 MODELLI NG TTV WI TH PERI ODI C
C O N F I G U R AT I O N S

We use the TTV data from the catalogue of Rowe et al. (2015) and
search for the best-fitting parameters of the two-planet model in
terms of the minimum of the standard χ2

ν function. What differs
the procedure from the standard fitting approach is that here the
orbital parameters (a1, a2, e1, e2, �1, �2,M1,M2) given at time
t0 are not free parameters. Each configuration for which χ2

ν is being
evaluated has to be periodic. Therefore, the optimization occurs at
a hyper-surface embedded in the parameters space.

As we have already shown in the previous section, the periodic
configurations form a family parametrized by the period ratio [for
given initial values of (��,M1,M2); we will use (π , 0, 0)] and
the planets’ masses. Particular values of the eccentricities as well as
the angles (��,M1,M2) are functions of time, i.e. they depend on
the phase of the periodic evolution, namely τ ∈ [0, T). Although the
dynamics of the system in scalable in a sense of physical dimensions
as well as it is rotation invariant, when modelling the observations
one needs to find an appropriate scale (that is given by initial P1) and
orientation. For the TTV analysis the only Euler angle that needs to
be fitted is the angle that measures the rotation in the orbital plane
(as we assume that the inclination I = π /2 and the TTV signal is
invariant with respect to the rotation in the sky plane; formally we
put � = 0 for both longitudes of the ascending nodes). We denote
the Euler angle by � 0, and for a given configuration tested in the
fitting procedure this value is being added to both longitudes of
pericentre.

Finally, the complete set of free parameters of the model xxx =
(m1, m2, P2/P1, P1, τ,�0). Direct minimizing χ2

ν = χ2
ν (xxx) would

be too long, as finding a periodic configuration for a given (m1, m2,
P2/P1) occurs in a numerical process of solving δ(e1, e2) = 0. In
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Figure 2. A χ2
ν -scan at the (m1, m2)-plane. See the text for details. Contours

indicate 1 −, 2 − and 3 − σ confidence levels.

order to make the procedure work efficiently, we treat the first two
parameters (m1, m2) as fixed in a given fitting process, while the
fitting is being repeated for subsequent points at the (m1, m2)-plane,
taken from a grid, namely mi ∈ [5, 20] M⊕, with an increment of
0.75 M⊕.

The period ratio (that has an osculating sense) is being chosen
before a given TTV fitting process in such a way that the ratio
of the periods of the transit times series {n, tn} agrees with the
observational value. Speaking in more details, for a given initial
set of osculating Keplerian elements, the equations of motion are
solved numerically, the transit times for both the planets are found
and the linear model of TTs, i.e. Tn = T0 + n〈P〉 is fitted to the
{n, tn} series. Next, the value of 〈P2〉/〈P1〉 is compared to the
observational value of the Kepler-25 system, i.e. ≈2.039. The scale
of the system is being found in the same way, i.e. 〈P1〉 needs to
equal the observational value of ≈6.2385 d.

Therefore, for given (m1, m2) the χ2
ν is being minimized in the

two-paremeter space, i.e. χ2
ν = χ2

ν (τ, �0). We use the same numer-
ical optimization scheme as in searching for the periodic orbits,
described in the previous section. Fig. 2 presents a scan of χ2

ν com-
puted at a grid of masses, as described above.

There is a clear minimum of χ2
ν around m1 = 10.8 M⊕ and m2 =

14.5 M⊕. Those values agree with the results in Hadden & Lithwick
(2014), where they used an analytic model of a near-resonant sys-
tem and obtained m1 = (9.0 ± 2.6) M⊕ and m2 = (14.3 ± 4.5) M⊕.
Formal confidence levels plotted with white curves indicate that the
masses are constrained within a ∼1 M⊕ uncertainty. The best-fitting
model, that is presented together with the observations in Fig. 3,
reconstructs the data satisfactorily well. Nevertheless, it is not per-
fect, as χ2

ν ≈ 1.59 is greater than 1 (what could be, in principle,
explained by underestimated measurement uncertainties). The pa-
rameters of the best-fitting system are listed in Table 1. Formal 1 −
σ uncertainties are very small. One should keep in mind, though,
that the orbital parameters are not free parameters of the model
in the common sense. The results listed in the table has to be un-
derstood as the most likely values under the assumption that the
configuration is periodic. The standard fitting procedure, in which
the parameters are free, will be applied to the data further in this
work.

Figure 3. TTV measurements (grey points with error bars) and the best-
fitting model (black dots connected with lines in order to lead the eye).

Table 1. The orbital elements of the best-fitting (χ2
ν = 1.59) periodic con-

figuration. The stellar mass m0 = (1.19 ± 0.05) M
 and the reference epoch
t0 = 50.0 (Barycentric Kepler Julian Date, BKJD).

Parameter Planet b Planet c

m/m0 (10−5) 2.23 ± 0.26 3.66 ± 0.31
m (M⊕) 10.8 ± 1.1 14.5 ± 1.3
P (d) 6.23769(2) 12.7210(4)
a (au) 0.0703 ± 0.0010 0.1130 ± 0.0015
e 0.0014(1) 0.00023(2)
� (deg) −57.639(1) 101.31(33)
M (deg) 50.7358(33) −132.61(34)

The parameters uncertainties listed in Table 1 were computed
while the uncertainty of the stellar mass was accounted for. The
mass of the star is computed from the surface gravity (logg) and the
radius of Kepler-25 listed in the catalogue in Rowe et al. (2015).
We obtain m0 = (1.19 ± 0.05) M
. The stellar mass uncertainty
enlarges uncertainties of the planets’ masses (slightly) and of the
semimajor axes (significantly). For the completeness of the errors
estimates, Table 1 lists also the planet-to-star mass ratio as well as
the Keplerian periods, computed from the semimajor axes with a
help of the Kepler’s third law.

4 CAN A N ON-RESONANT SYSTEM MI MIC A
P E R I O D I C C O N F I G U R AT I O N ?

As we already mentioned, a periodic configuration is character-
ized by the (O-C)-signals in antiphase. The observed system ful-
fils the criterion. Lets assume a sinusoidal model of TTV, i.e. (O-
C)i = Aisin [(2π /T(O-C))t + �i], where T(O-C) is the period and �i

is the phase of the TTV signal of the ith planet. By fitting the
model to the data one obtains A1 = (3.8 ± 0.4) min, A2 = (1.6 ±
0.2) min, T(O-C) = (325 ± 5) d, and �a-ph ≡ |(�1 − �2) − π | =
(5 ± 9) deg. The latter quantity measures the deviation of the sig-
nals from the antiphase. [Naturally, (�1 − �2) − π is kept in the
range of (− π , +π ).] For the periodic configuration �a-ph = 0.

One may ask what is the value of �a-ph for a system far from
periodic. In general, we expect that �a-ph is a function of initial
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orbital elements. Fig. 4(a) presents a scan of this quantity in a plane
of the eccentricities for a fixed period ratio and four representative
pairs of the resonant angles (φ1, φ2). Each quarter of the plane
represents a different combination of the angles, i.e. (0, 0), (0, π ),
(π , 0), and (π , π ) (lets enumerate those quarters by I, II, III, and
IV, respectively). That means that there are two quarters with ��

= 0 and two with �� = π .
A given representative combination of (φ1, φ2) can be achieved by

two different combinations of (M1,M2, �1, �2). The choices for
particular quarters are dictated by the continuity requirement at the
x and y axes of the plane, where x = e1cos φ1 and y = e2cos φ2. We
chose for quarter I (M1,M2, �1, �2) = (0, 0, π, π ), for quarter II
(0, π , π , 0), for quarter III (π , 0, 0, π ), and for quarter IV (π , π , 0,
0). The period ratio equals 2.039 and the planets’ masses equal the
best-fitting values of m1 = 10.8 M⊕ and m2 = 14.5 M⊕. The white
symbol points the position of the periodic configuration. The values
of �a-ph(x, y) (that are coded with a shade of grey) are computed by
integrating the N-body equations of motion for a particular initial
system, computing the series of TTs (in a window of 4.3 yr, as it is
for the Kepler-25 system) and computing the phases of TTV signals
for both planets.

There is clearly a line corresponding to �a-ph = 0 (given by y =
2.78722x − 0.00412482) going through the periodic system, what
means that other configurations with different (x, y) also produce
TTV signals in antiphase. By looking at this kind of plot alone,
one cannot distinguish between the periodic and non-periodic (non-
resonant) systems lying at the black line in Fig. 4(a). Dashed lines
indicate a value of 14 deg, what is the maximal �a-ph for the observed
system.

Remaining panels of Fig. 4 show scans of other quantities. Panel
(b) presents the results for T(O-C). The period of the TTV signal does
not change significantly over the plane. For the whole plane T(O-C)

agrees with the value of the Kepler-25 system, i.e. (325 ± 5) d.
Panels (c) and (d) illustrate the results for the semi-amplitudes of
the TTVs. The line for which �a-ph = 0 corresponds to minima of
A1 and A2. At this line both A1 and A2 equal the values of the best-
fitting model. In panel (d) an additional information is given. Dashed
areas indicate regions of oscillations of �� and φ1. The latter
encompasses a small area around the periodic configuration. The
region in which the second resonant angle φ2 librates is smaller than
the size of the white dot pointing the position of the periodic system.
The areas of �� -oscillations are wide and exist for both oscillations
centres 0 and π . They correspond to non-resonant dynamics and
represent the two modes of secular oscillations (e.g. Michtchenko
& Malhotra 2004). That means that a non-resonant system can
mimic the periodic configuration.

4.1 Probability that a non-resonant system mimics a periodic
configuration

A periodic configuration does not evolve in long time-scales (apart
from a uniform rotation of the system as a whole), therefore regard-
less the epoch in which we observe the system the (O-C)-diagram
looks the same. On contrary, a non-periodic configuration evolves
in the secular time-scale. In order to illustrate that we chose an
initial system that lies in a vicinity of the (�a-ph = 0)-line, i.e. e1

= 0.006, e2 = 0.013, and all the angles equal 0 (the point lies in
quarter I). The evolution of this example configuration is shown in
Fig. 5. The eccentricities as well as �� vary in ∼680 yr secular
time-scale. The resonant angle φ1 rotates much faster.

The evolution of the system results in the variation of �a-ph, what
is illustrated in Fig. 6(a) (note the wider time-window with respect

to Fig. 5). We observe the variation in ∼680 yr period (reaching
�a-ph ∼ 0) as well as a longer period modulation (∼5 kyr), that
corresponds to the rotation of the system as a whole (see Fig. 6b for
the evolution of individual values of � 1, � 2). We observed that the
long-period modulation of �a-ph has minimal amplitude for � 1 ≈
� 2 ≈ −π /2. Therefore, a system that is not periodic may look like
one (in a sense of �a-ph ∼ 0) for particular orientations of the orbits
as well as for particular phases of the secular evolution.

A shaded area in Fig. 6(a) denotes the 14 deg limit. There are
epochs in the evolution of this system in which the TTV signals
can be even in phase, i.e. �a-ph = π . As a result, only for some part
of the time the system, that is not periodic, looks like a periodic
configuration. One can compute the probability that �a-ph < 14 deg
(denoted with p1) by dividing the amount of time in which �a-ph <

14 deg by the whole time of the integration. Because �a-ph depends
on the two characteristics, i.e. on the phase in the secular modulation
of the eccentricities and the spatial orientation of the system, instead
of integrating a given initial configuration for a very long time, we
integrate the system for the time that equals the secular period of
∼680 yr and rotate the configuration within the whole range of
360 deg. The probability is computed by evaluating �a-ph every
20 yr of the integration and by rotating the system at each epoch
with an increment of 20 deg. That makes 34 × 18 = 612 (O-C)
diagrams for each initial configuration to be tested. A number of
diagrams for which �a-ph < 14 deg divided by 612 defines p1. For
the system considered p1 ≈ 40 per cent. In general, the probability
p1 is a function of (x, y).

The (x, y)-scan of the probability p1 is presented in Fig. 7(a).
Naturally, for the periodic system and in its vicinity p1 = 100 per
cent. The region of relatively high p forms an X-shape structure at
the plane. That stems from the fact that at a given point the plane has
three counterparts, as a given configuration, in general, intersects
the representative plane in four points during the evolution. The
positions of the intersections for the example configuration with
e1 = 0.006 and e2 = 0.013 (φ1 = φ2 = 0) are marked with black
circles.

One can see that for higher eccentricities, especially in quarters
II and III, p1 is relatively high. We computed the scan in a wider
range of e < 0.1, and observed that p1 can reach even 100 per cent.
Panels (b), (c), and (d) of Fig. 4 show that not only �a-ph depends
on (x, y), also T(O-C) and the amplitudes A1, A2 are functions of the
eccentricities and the resonant angles. Moreover, those quantities
depend on the phase in the secular evolution as well as the orienta-
tion of the system. Therefore, a given system with high p1 can be,
in general, characterized by T(O-C), A1, A2 very different from the
values of the observed system. Such a system cannot be considered
as consistent with the observations.

Another characteristic of the (O-C)-signal that needs to be con-
sidered is whether or not there is a second mode in it. Fig. 8 illus-
trates the Lomb–Scargle periodograms of the (O-C)-signals of the
Kepler-25 system. There is no secondary peak higher than ∼0.27
and ∼0.33 of the primary peaks heights (for planets b and c, re-
spectively). Therefore, we require that for the synthetic systems
considered as consistent with the observations the secondary-to-
primary peak ratio is below the limits given above.

Fig. 9 presents the (O-C)-signals as well as the Lomb–Scargle
periodograms for two configurations that have �a-ph ∼ 0 (see the
caption of this figure for the parameters). The system with e1 =
0.006 has a uni-modal (O-C)-diagram, as it should be for a close-
to-periodic configuration. The system with higher eccentricities is
characterized with bi-modal (O-C)-signals. Therefore, this kind of
configuration is not consistent with the observations.
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1772 C. Migaszewski and K. Goździewski

Figure 4. Panel (a): (e1cos φ1, e2cos φ2) − scan of the deviation from the antiphase of the (O-C) synthetic signals, �a-ph. Masses m1 = 10.8 M⊕,m2 = 14.5 M⊕
and semimajor axes a1 = 0.070274 au, a2 = 0.1129985 au are fixed for the whole plane. Each quarter was obtained for different combinations of the angles
(φ1, φ2) = (0, 0), (0, π ), (π , 0), or (π , π ). The white circle symbol points the position of the periodic configuration that fits the Kepler-25 TTVs. Panel (b):
an analogous plot presenting T(O-C) as a function of the (x, y). The bottom panels illustrate the scans of A1(x, y) and A2(x, y). Panel (d) presents an additional
information on the regions in which �� and φ1 oscillate (dashed areas).

In order to incorporate those criteria into the probability that a
given configuration from the (x, y)-plane can be the real config-
uration of Kepler-25, we defined another quantity, p2, which is a
probability that a given system has �a-ph < 14 deg and also that
A1 ∈ (2.6, 5.0) min, A2 = (1.0, 2.2) min, T(O-C) = (320, 330) d
and that the second peaks in the periodograms of both signals are
smaller than the values given above. The ranges of the allowed am-
plitudes correspond to the 3 − σ confidence levels for the values of
the observed signal. We widened the range because the amplitudes
depend on the planets’ masses, that are fixed for the plane at the
values constrained with the periodic configuration assumption, that
is not fulfilled for the whole plane.

Fig. 7(b) shows the scan of p2 in the same manner as in panel
(a). Clearly, the only configurations that might correspond to the
observed system are confined to the X-shape structure around the

periodic configuration. Still, the probability that a non-resonant low-
eccentric configuration lying in a vicinity of the line given by y =
2.78722x − 0.00412482 can mimic the periodic configuration is
relatively high. We computed a 1-D scan of p2 along the (�a-ph =
0)-line (not shown) and found that for e1 � 0.01 (and e2 � 0.027)
the probability is already very low, p2 � 5 per cent, while for e1 �
0.02 (and e2 � 0.054) p2 = 0.

5 TH E M C M C A NA LY S I S

Before going to the MCMC (Markov Chain Monte Carlo) analysis
of the TTVs we consider an influence of the third non-transiting
planet in the system on the TTVs of the two transiting planets. Marcy
et al. (2014) measured the radial velocities (RV) of the Kepler-25
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Figure 5. Evolution of the eccentricities and the angles of an example initial
configuration e1 = 0.006, e2 = 0.013, P2/P1 = 2.039, �i = Mi = 0, i =
1, 2.

Figure 6. Panel (a): Variation of �a-ph for the example initial configuration
e1 = 0.006, e2 = 0.013, P2/P1 = 2.039, �1 = �2 = M1 = M2 = 0, whose
orbital elements evolution was illustrated in Fig. 5. Panel (b): The evolution
of the longitudes of pericentres in time for the same initial configuration
(grey and black colours denote � 1 and � 2, respectively). Vertical dashed
lines in both plots indicate epochs for which � 1 ≈ � 2 ≈ −π /2, that
correspond to minima of ∼5 kyr-modulation of �a-ph.

and constrained the masses of planets b and c to be m1 = (9.6 ±
4.2) M⊕ and m2 = (24.6 ± 5.7) M⊕, that is roughly consistent with
the model of the periodic configuration, although the mass of planet
c is slightly smaller in our work. They also found that apart from the
two planets discovered by the Kepler mission (Steffen et al. 2012),
there is a weak RV signal of the third, more distant companion. The
amplitude of the RV variation is relatively small and the precision of
the measurements was not good enough to constrain the parameters
of the third planet satisfactorily. There are two possible periods of
planet d reported, i.e. (123 ± 2) and (93 ± 2) d. The mass of the

planet m3 = (89.9 ± 13.7) M⊕ and the eccentricity e3 = 0.18 (the
uncertainty of e3 was not given). There is a possibility, though, that
the third planet affects noticeably the TTVs of the two transiting
planets b and c. We tried to verify the possibility by performing a
following test.

An expected result of an existence of the third planet in relatively
wide orbit is an additional signal in (O-C) of the period equal to the
orbital period of this planet and its harmonics (Agol et al. 2005).
The perturbing planet should not change the phase nor the period of
the (O-C) of the resonant pair. In order to verify that and to check the
amplitudes of the additional (O-C)-modulation due to the outermost
companion, we added the third planet into the model, constructed the
(O-C)-diagrams for planets b and c and compared the diagrams with
the ones obtained for the unperturbed two-planet system. At first we
chose the most likely values of m3 and e3. For planet b the difference
is practically none, while for planet c the additional signal amplitude
� 0.1 min, depending on the assumed period of the third planet (123
or 93 d) and a given angles (M3, �3) = (0, 0), (0, π ), (π, 0) or (π ,
π ). The A2 variation is well below the TTVs uncertainties, moreover
neither the period nor the phase of the (O-C)-signal are altered due
to the third planet. Next, we increased the mass of the outermost
companion to 89.9 + 13.7 = 103.6 M⊕ and tried to find at what
value of e3 (when increasing above the most likely value of 0.18)
the amplitude of the additional (O-C)-modulation equals ∼0.5 min,
that is the noise level for (O-C) of planet c (see the Lomb–Scargle
periodogram illustrated in Fig. 8). We found that for P3 = 123 d,
the limiting e3 = 0.4, while for P3 = 93 d, the limiting e3 = 0.3. For
eccentricities higher than the limiting values, the third planet would
produce an additional signal in (O-C)-diagram of planet c that is
detectable. As we do not observe any additional periodicities in the
(O-C)-diagrams, we conclude that the eccentricity e3 is below the
limiting values we found and the long-period companion does not
need to be incorporated into the model.

5.1 The standard TTV modelling and the periodic
configuration

At present, the Bayesian inference is a de facto standard for the
analysis of the Kepler light-curves and the TTV measurements.
A crucial step in this approach is to define correct priors for de-
termining the posterior distribution of model parameters. This is
particularly important for interpretation of TTV models which tend
to degenerate solutions characterized by strongly aligned orbits with
moderate and large eccentricities (e.g. Hadden & Lithwick 2014;
Jontof-Hutter et al. 2016; MacDonald et al. 2016). Therefore, the
TTV fitting must be monitored whether or not its results depend on
the adopted eccentricity priors, to avoid drawing incorrect conclu-
sions on the orbital archituecture of the studied planetary system.

Jontof-Hutter et al. (2016) assumed the Rayleigh distribution for
the prior of the eccentricities and chose two different values of the
Rayleigh parameter σ e = 0.1 (wide prior, i.e. weak constraints on the
eccentricities) and σ e = 0.02 (narrow prior, i.e. stronger constraints).
The posterior distributions of �� for a few systems obtained for
the two different values of σ e differ significantly one from another.
For the wide prior the most likely are the aligned configurations, i.e.
with �� ∼ 0. When the prior is narrower, the peaks of the posterior
distributions of �� move towards ±π , although for the value they
used, 0.02, the maxima of the posterior distribution are shifted by
only 20−50 deg with respect to 0, depending on the system. One
may expect, that for even lower σ e, the peaks could move to the ±π

positions.
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Figure 7. Panel (a): A scan of the probability p1 presented at the representative plane. The black circles indicate the points in which the example configuration,
whose evolution was illustrated in Figs 5 and 6, intersects the plane. The big white symbol close to the centre represents the periodic configuration, while the
dashed line corresponds to �a-ph = 0 at the representative plane. Panel (b): A scan of the probability p2 presented in the same manner as in panel (a).

Figure 8. The Lomb–Scargle periodograms of the (O-C)-signals of Kepler-
25 (black and grey curves are for the inner and the outer planets, respec-
tively).

We showed previously (Fig. 7) that the aligned non-resonant
configurations can mimic the periodic configuration. The (O-C)-
signals of such qualitatively different systems look the same, what
may bring problems when the direct fitting approach is applied.
The eccentricities of the periodic configuration for P2/P1 = 2.039
are very small, ∼0.0001−0.001, therefore, finding such a system
without strong a priori constraints on the eccentricities may be
difficult. We presume that non-periodic (aligned) configurations
are favoured in the fitting procedure (with wide priors put on the
eccentricities), regardless the real architecture of the system.

In this section, we aim to verify this hypothesis by running exten-
sive MCMC sampling of the posterior distribution. We used the TTV
model described, for instance, in our previous papers (Goździewski
et al. 2016; Migaszewski et al. 2017). Similarly, we imposed the
Gaussian priors with the mean equal to 0 and a prescribed standard
deviation σ set on the Poincaré parameters, X ≡ ecos � and Y ≡
esin � , rather than on the eccentricities. The Poincaré elements are
the free parameters of the TTV model and encode the eccentricity
and the longitude of pericentre, respectively. We sampled the poste-
rior distribution with the EMCEE package by Foreman-Mackey et al.
(2013), choosing up to 256 000 iterations made with 1024 ‘walkers’
in a small hypercube in the parameter space.

We did a series of the MCMC experiments for σ ∈ [0.00033,
0.1]. The results, selected for representative values of σ = 0.033,

0.0033, 0.001, are illustrated in Fig. 10. Each row presents the
results for one of the values of σ (given in the middle-column
panels). The left-hand column shows the posterior probability dis-
tribution at the plane of (� 1, �� ), the middle column is for the
(m1, m2)-plane, while the right-hand column – for (e1, e2)-plane.
These results confirm our predictions. Indeed, for high σ aligned
configurations are preferred, while lower σ leads to anti-aligned or-
bits. Although for high σ the anti-aligned systems are also allowed,
they are less likely than the aligned ones. Another general obser-
vation is an existence of a correlation between σ and the masses
and eccentricities, i.e. higher σ means lower masses and higher
eccentricities.

The top row of Fig. 10 illustrates the results for σ = 0.033, which
may be representative for high σ , as for even higher values the
qualitative picture is the same. The posterior probability distribution
is bi-modal, as both aligned and anti-aligned systems are possible.
The aligned orbits are, as already mentioned, more likely. For higher
σ the disproportion between the modes is even more significant (the
corresponding plots are not shown). The bi-modality is seen also at
the eccentricities plane (right-hand column), although it is not that
clear as for the (� 1, �� )-distribution. The most likely masses are
very low, i.e. m1 ≈ 1 M⊕, m2 ≈ 4.5 M⊕, which gives low densities
for both the planets, ∼0.3 g cm−3.

The second row from the top of Fig. 10 shows the posterior
probability distribution obtained for σ = 0.0033. The anti-aligned
mode becomes more significant than the aligned one. The masses
increase and the eccentricities decrease when compared to the pre-
vious example. The masses increase by a factor of 6 and 2.5, for
the inner and the outer planet, respectively. That leads to the densi-
ties, respectively, ∼1.8 g cm−3 and ∼0.68 g cm−3. Clearly, different
prior information on the eccentricities leads to qualitatively differ-
ent both dynamical structure of the system and possible physical
composition of the planets.

The bottom row corresponds to the lower value of σ = 0.001.
For this prior there exists only the anti-aligned mode (understood
as a maximum of the posterior probability distribution). Predicted
masses are higher with respect to the previous case, and the eccen-
tricities are lower. For lower σ = 0.00033 (not shown) the resulting

MNRAS 480, 1767–1777 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/480/2/1767/5057499
by Uniwersytet Mikolaja Kopernika Biblioteka Glowna user
on 21 August 2018



Periodic configuration of Kepler-25 1775

Figure 9. The left-hand column: the (O-C)-plots for two configurations with (e1, e2) equal to (0.006, 0.013), (0.04, 0.107), for the top and bottom rows,
respectively. For each of them �a-ph ∼ 0. Both the systems are chosen from quarter I of the representative plane. The right-hand column: the Lomb–Scargle
periodograms for the signals presented in the left-hand column. Black and grey curves correspond to the inner and the outer planets’ signals, respectively.

eccentricities are even lower (e1 ≈ e2 ≈ 0.0003) and the masses
are higher (m1 ≈ m2 ≈ 16 M⊕). Due to very low eccentricities the
apsidal lines are poorly constrained, although, similarly to the pre-
vious case, the anti-aligned system is the most likely. The masses
obtained for σ = 0.033 and σ = 0.00033 differ by a factor of ∼4
and � 10 for the inner and the outer planets, respectively. The dif-
ferences in the eccentricities are even larger, i.e. up to two orders of
magnitude.

While different σ gives different masses, eccentricities, and ap-
sidal lines, the best-fitting configurations in terms of the highest
posterior probabilities have different values of the standard χ2

ν , for
different σ . From a set of values we chose, the lowest χ2

ν was
obtained for σ = 0.001, i.e. χ2

ν = 1.532. The parameters of that
configuration are listed in Table 2. The quality of the fit is slightly
better when compared with the parameters obtained for the peri-
odic configuration (see Table 1). Nevertheless, the masses are both
in agreement between the models, so do the eccentricities. The
longitudes of pericentre as well as the mean anomalies differ sig-
nificantly (probably due to very small eccentricities), however, the
mean longitudes are in perfect agreement, as they should be.

The mass and radius of the outer planet are very similar to the
values of Uranus, only the radius is ∼10 per cent larger. The inner
planet’s mass and radius suggest the composition based mainly on
water (e.g. Zeng, Sasselov & Jacobsen 2016), although an existence
of water at such small distance from the star could be problematic.
We stress again that the masses, eccentricities as well as the relative
orientation of the apsidal lines depend strongly on a priori infor-
mation on the eccentricities. Such different orbital and physical
parameters bring very different boundary conditions for the plan-
etary systems formation theories, both in the aspect of the orbital
characteristics as well as the internal structure of the planets.

6 C O N C L U S I O N S

We showed that a periodic configuration of two planets, that is
a natural outcome of the migration, can be a good model of the
TTV of the Kepler-25 planetary system. The period ratio of the
system P2/P1 = 2.039 is significantly shifted from the nominal

value of the 2:1 mean motion resonance, what may suggest a non-
resonant nature of the system. We demonstrated that an anti-aligned
resonant system produces the same (O-C)-diagrams as an aligned
non-resonant configuration, however, the latter needs to fulfil certain
criteria, like the orientation of the apsidal lines, or the relation
between the eccentricities, in order to mimic the TTV signal of the
periodic configuration. Due to low eccentricities of the resonant
system of this value of P2/P1 (e1 ∼ 0.0015, e2 ∼ 0.0002), as well
as a degeneracy of the model mentioned above, finding a resonant
configuration would be difficult (even if it was the true configuration
of this system), without a priori information on the eccentricities.

We studied the probability that a non-resonant configuration
mimics a periodic system. Although such a non-resonant config-
uration can explain the TTV produced by the periodic system, the
probability is lower when the configuration is further from the peri-
odic system. We conclude that the real architecture of the Kepler-25
planetary system is very likely resonant in terms of librating reso-
nant angles,1 not only because of the probability test, but also be-
cause such a configuration is a natural outcome of the disc-induced
migration, both convergent and divergent, what is believed to act a
crucial role in the formation of the planetary systems.

We illustrated the dependence of the final orbital structure of the
system as well as planets’ masses on the assumed a priori infor-
mation on the eccentricities. Wide prior probability distributions
lead to aligned orbits and small masses, while narrower priors re-
sult in anti-aligned orbits and larger masses. The mass-eccentricity
anticorrelation shown here in the series of MCMC experiments
(Fig.10) results from the degeneracy of the TTV signals that was
illustrated with a help of an analytic model of a near-resonant two-
planet system in Hadden & Lithwick (2014). On the other hand,
the dependence of �� (aligned/anti-aligned orbits) on the priors
(discussed also in Jontof-Hutter et al. 2016) can be understood from
Fig. 4, i.e. the systems that lie along the line with �a-ph = 0 have the
same TTV amplitudes and the period. Both the degeneracies make

1We do not check the dynamical neighbourhood of the system that could
show whether or not the system lies in a region separated by a separatrix
from the rest, non-resonant part of the phase space.
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Figure 10. Two-dimensional projections of the posterior probability distribution for the Kepler-25 system. Columns are for the eccentricities, masses (expressed
in Earth masses), the longitude of pericentre (� 1), and the apsidal angle �� (expressed in degrees), respectively. Rows from the top to the bottom are for σ

= 0.033, 0.0033, and 0.001, respectively. Notice that the axes ranges for the middle and the righ-hand columns are different for different sigma. Contours are
plotted for the 14th, 50th, 86th, and 99.9 percentile of the MCMC samples derived from runs of 1024 walkers for 128 000 iterations each; for σ = 0.033 the
number of walkers was increased to 2048 in order to address the two-modal posterior distribution.

Table 2. The orbital elements of the best-fitting (χ2
ν = 1.532) configuration

from the MCMC analysis for σ = 0.001. The stellar mass m0 = (1.19 ±
0.05) M
 and the reference epoch t0 = 50.0 (BKJD).

Parameter Planet b Planet c

m/m0 (10−5) 3.11+0.94
−0.66 3.89+0.43

−0.41

m (M⊕) 12.3+3.8
−2.7 15.4+1.8

−1.7
P (d) 6.23768(6) 12.7210(9)
a (au) 0.0703 ± 0.0010 0.1130 ± 0.0015
e 0.0010+0.0008

−0.0006 0.0005+0.0008
−0.0005

� (deg) −131+26
−43 58+182

−75

M (deg) 124+44
−25 −89+72

−146

the standard MCMC modelling a challenging task and additional
knowledge on the formation mechanisms (and their expected out-
comes) may be very useful when setting the eccentricity priors, that
are crucial for determining the systems’ parameters.

We argue that aligned configurations with relatively high eccen-
tricities that seem to be common among analysed Kepler systems
may be artefacts and we believe that other systems with clear TTV
signals should be verified in terms of their closeness to the periodic
configurations, as true nature of the systems is essential for our un-
derstanding of the planetary systems formation, both their orbital
configurations as well as physical compositions of the planets.
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