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ABSTRACT

We re-analyse the global orbital architecture and dynamical stability of the HD 160691 planetary system. We have updated the
best-fitting elements and minimal masses of the planets based on literature precision radial velocity (RV) measurements, now
spanning 15 yr. This is twice the RVs interval used for the first characterization of the system in 2006. It consists of a Saturn-
and two Jupiter-mass planets in low-eccentric orbits resembling the Earth—-Mars—Jupiter configuration in the Solar system, as
well as the close-in warm Neptune with a mass of ~14 Earth masses. Here, we constrain this early solution with the outermost
period to be accurate to one month. The best-fitting Newtonian model is characterized by moderate eccentricities of the most
massive planets below 0.1 with small uncertainties ~0.02. It is close but meaningfully separated from the 2e:1b mean motion
resonance of the Saturn—Jupiter-like pair, but may be close to weak three-body MMRs. The system appears rigorously stable
over a wide region of parameter space covering uncertainties of several o. The system stability is robust to a five-fold increase
in the minimal masses, consistent with a wide range of inclinations, from ~20° to 90°. This means that all planetary masses are
safely below the brown dwarf mass limit. We found a weak statistical indication of the likely system inclination / >~ 20°-30°.
Given the well-constrained orbital solution, we also investigate the structure of hypothetical debris discs, which are analogues
of the Main Belt and Kuiper Belt, and may naturally occur in this system.

Key words: methods: data analysis—methods: numerical —techniques: radial velocities—celestial mechanics —planets and
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1 INTRODUCTION

HD 160691 (i Arae, GJ 691) is a bright (V = 5.15 mag) Sun-
like, main-sequence G3IV-V dwarf monitored in a few long-term,
precision radial velocity (RV) surveys. The Anglo-Australian Tele-
scope team (AAT, UCLES spectrometer) discovered its Jupiter-mass
companion HD 160691b in about of 630-d orbit (Butler et al. 2001),
and Jones et al. (2002) found a linear trend in the RV data indicating a
second, more distant planet. The star was also observed in the Geneva
Planet Search program with CORALIE spectrometer. McCarthy
et al. (2004) determined the orbital period of the outermost planet
HD 160691c ~ 3000 d and large eccentricity e, ~ 0.57, however
rendering the system unstable. The same year, Santos et al. (2004)
detected ~14 Earth-mass planet HD 160691d in ~9.6 d orbit with
HARPS spectrometer, achieving precision ~1 ms~!, actually below
the RV variability (aka stellar jitter) induced by the Sun-like stars
themselves. Furthermore, Butler et al. (2006) published 108 new
observations of HD 160691, spanning about of 7.5 yr, made after
AAT UCLES update, also approaching the measurement uncertainty
below 1 ms~! at the end of the observational window. Shortly,
Pepe et al. (2007) published RVs from their HARPS followup,
and announced the discovery of the fourth, Saturn-mass planet in
the system. In parallel, Gozdziewski, Maciejewski & Migaszewski
(2007) independently used genetic algorithms to re-analyse data in
the Butler et al. (2006) catalogue, and they found a very similar
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solution with small eccentricity orbits, also including the fourth
planet with the orbital period ~307 d. That planet ‘hided’ in the
RV signal, because this period is approximately two times shorter
as that of the firstly detected planet HD 160691b. Such a planet
was unexpected in the paradigm of characterizing planets in order
correlated with their RV variability. Gozdziewski et al. (2007)
concluded that the four-planet system may be long-term stable in
a wide range of the outermost period. However, it could not be
constrained very well at that time, in ~ 3000-5000 d range.

Since then, the star has continued to be RV-monitored. The HARPS
measurements are now publicly available in the RV catalogue
from archival spectra carefully reduced by Trifonov et al. (2020).
Also, very recently Benedict et al. (2022) published additional
180 measurements from the UCLES spectrometer. The data alto-
gether span 17.3 yr (=~6318 d), between epochs JD 2450915.29 and
JD 2457273.2878. Benedict et al. (2022) aimed to derive the new
solution for the system based on combined RVs with Hubble Space
Telescope (HST) astrometry. They investigated possible astrometric
signals of the planets. They conclude that the residuals ~1-2 mas to
the canonical 5-parameter astrometric model contain marginal or no
evidence for any of the planets in the HD 160691 system, making it
possible only to constrain lower masses of the planets to 4— 7 Myyp
(i.e. 2-3 times larger than the minimal masses estimated with the
RVs).

Furthermore, Benedict et al. (2022) report their updated Keplerian
RV solution including the Saturn-mass planet as catastrophically
unstable. They conclude that a notorious instability problem of the
system remains unsolved, invoking Pepe et al. (2007), Laskar &
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Petit (2017), Agnew, Maddison & Horner (2018), and Timpe et al.
(2013). This renewed our interest in the dynamics of HD 160691
system, given simultaneously our earlier, extensive investigations
(Gozdziewski, Konacki & Maciejewski 2003, 2005), and the results
in GoZdziewski et al. (2007). We came to quite the opposite conclu-
sion that the four-planet architecture, and moderate eccentricity of all
planets is crucial to maintain the long-term stability of the system.
Actually, we found in GoZdziewski et al. (2007) that the 3-planet
model involving only two outer Jovian planets is localized at the
very border of dynamical stability, with planets in high-eccentricity
orbits, and such a feature indicated that the adopted model was
incomplete or incorrect.

Extending the RV time series puts the long-term monitored
planetary systems deeper in the stability zone. A recent discussion
of this heuristic effect can be found in Stalport et al. (2022). What
is more, not only the RV data covers twice the time range in earlier
work. The most accurate HARPS data recently been independently
reprocessed using a new RV pipeline by Trifonov et al. (2020). They
discovered and removed various systematic errors in a large sample
of spectra. In some cases, they claim, the new RVs with improved
accuracy can lead to orbital solutions different or more accurate from
those found so far, including the hope of detecting additional planets.
All of this gives us ample opportunity to test earlier predictions. Our
goal is also to update the system’s position in stability diagrams and
statistics of multiple systems, studied for example by Timpe et al.
(2013) and Laskar & Petit (2017).

In addition to explaining this qualitative discrepancy between the
results in Benedict et al. (2022) and in Gozdziewski et al. (2007) the
motivation for this work is to answer several open questions which
have not been previously addressed in the literature.

Since the current RV data covers almost twice the observational
window since 2006, we want to constrain the orbit of Jupiter’s
outermost planet. It was determined with a large uncertainty of 700 d
reported in Pepe et al. (2007) and an even larger uncertainty of
+1300 d in Gozdziewski et al. (2007).

Also, itis known that a sufficiently long interval of RVs data makes
it possible to detect gravitational interactions between the planets
(e.g. Laughlin & Chambers 2001). Until now, the RVs of & Arae have
been modelled in terms of a Keplerian parametrization of the orbital
elements, since the interactions of its planets were not measurable
at the time. In this kinematic approach, the inclination of the
system remains completely unbounded. However, the most accurate
Newtonian model can break the mass-inclination degeneracy, or
at least constrain the masses of the planets indirectly through the
stability requirement.

Our goal is also to resolve the open question of whether the
inner Saturn—Jupiter planet pair is involved in the 2e:1b MMR, or
whether it is only close to this resonance. As far as this is concerned,
the conclusions in both Pepe et al. (2007) and Gozdziewski et al.
(2007) were uncertain, as both types (resonance or near-resonance)
of solutions were possible. However, this is crucial for explaining
the apparent excess of planet pairs near low-order resonances (e.g.
Petrovich, Malhotra & Tremaine 2013; Marzari 2018, and references
therein). The detailed characterization of multiple planetary systems,
including their orbital resonances, is one of the fundamental problems
from the point of view of the theory of planet formation and for
explaining their observed orbital architectures.

If our early predictions in Gozdziewski et al. (2007) hold, and
we find a dynamically stable orbital architecture for the planets, it
may be possible to study the structure of debris discs in the system,
particularly in the broad zone between 1.5 and 5.2 au, and beyond
the outermost planet. According to the packed planetary systems
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(PPS) hypothesis (Barnes & Greenberg 2007, and references therein),
smaller planets may exist in the system, but below the current RV
detection level, approximately 1ms~', which correspond to the
Earth’s mass range.

Finally, the highly hierarchical configuration of the HD 160691
planets imposes numerical problems in studying the long-term
stability of the system, either through direct numerical integrations
or by using the fast indicator approach, which is preferred in this
work. Recall that the system contains a warm Neptune in an orbit
of 9.6 d, as well as a very distant companion in an orbit of 4000d,
forcing a huge reduction in the discretization step size. To solve
this problem, we propose a new numerical algorithm called REM
(Panichi, GoZdziewski & Turchetti 2017), which we proved to be a
close analogue of the Maximum Lyapunov Exponent (MLE). In this
work, we compare the results of this fast indicator with the well-
tested and widespread MEGNO (Gozdziewski et al. 2001; Cincotta,
Giordano & Simé 2003). We show that despite simplicity of the
algorithm, the REM indicator yields 1:1 dynamic maps compared
to MEGNO and still outperforms the later variational algorithm in
terms of CPU overhead.

We attempt to answer the questions posed above from the perspec-
tive of both updated RV time series and constraints provided with
astrometric observations, as well as new statistical formulations of
the RV model, dynamic and computational tools that have emerged
over the time since the studies of Gozdziewski et al. (2007) and Pepe
et al. (2007); we note that Benedict et al. (2022) also modelled the
RV using the former, now somewhat ‘outdated’ approach.

Planets discovered in the p Arae system are named in different
ways. Here, we adopt three designations: the first one is based on
the star name, as the central object and subsequent Roman letters
(‘b’, ‘c’, ‘d’, and so on) attributed to the planetary companions in
the chronological order of their discovery (Gozdziewski et al. 2007).
The second method is to enlist the planets according to their distance
from the star, with digits ‘1°, ‘2°, ‘3”, and so on. Finally, we use the
names attributed to the planets by the International Astronomical
Union (2015) in the NameExoWorld campaign', among firstly
discovered 19 extrasolar planetary systems. They were inspired
by characters from the famous Don Quixote book by Miguel de
Cervantes. So the « Arae system is composed of the host star Cer-
vantes (HD 160691), and planetary companions HD 160691d (Dul-
cinea, planet ‘1”), HD 160691e (Rocinante, planet ‘2’), HD 160691b
(Quijote, planet ‘3’), and HD 160691c (Sancho, planet ‘4’),
respectively.

The paper is structured as follows. After this Section 1, we
describe data sources used for this study in Section 2. We discuss
planet detection limits, based on the astrometric HST data and their
analysis reported in Benedict et al. (2022), as well as our independent
simulations of the astrometric signal. In Section 2.3, we briefly
recall essential details on the RV modeling in terms of Keplerian
and Newtonian parametrization of the initial conditions (ICs) for
multiplanet configurations, and we point out factors omitted in the
prior literature. We report on a comparison of the results based on
these two RVs parametrizations. Section 3 is devoted to the long-term
stability of the system. We aim to bound the inclination of the system
with the RVs alone, based on the Newtonian model and statistical and
dynamical constrains. Section 4 is devoted to numerical simulations
that reveal the dynamical structure of hypothetical debris discs in the
system as well as indicate possible localization of additional smaller
planets. The work is summarized in Section 5.

Uhttps://www.nameexoworlds.iau.org/
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Figure 1. Astrometric detection limits in the mass—semimajor axis space for planets in circular, edge-on orbits simulated with the HTOF package (Brandt et al.
2021a), based on perturbed motion of the star due to the presence of planets. Objects in the blue-shaded region would be detected within the A x2 > 30 criterion
when combining Gaia DR4 and Hipparcos 1AD. (This criterion assumes A x> = 0 for a free, inertial motion of the star). The left-hand panel is for edge-on
orbits of the Saturn- and Jupiter-mass planets around p Arae with the orbital elements listed in Table 2, Fit IIN. Jupiter and Saturn are marked for a reference.
We assume extremely high-precision IAD in the anticipatedGaia DR4 catalogue, with the mean uncertainty of 50 pas. The right-hand panel is for the planet
masses enlarged by the factor 1/sin (30°), and artificial IAD accuracy of Gaia DR4 >~ 0.7 mas, compatible with the declared HST FGS measurement precision
reported in Benedict et al. (2022). There are planned 96 Gaia observations by the year of 2022, based on the Gaia Observation Forecast Tool (GOST).

2 THE REFLEX MOTION DATA FOR HD 160691

2.1 Astrometric observations

Benedict et al. (2022) observed HD 160691 with the HST Fine
Guidance Sensor (FGS) between dates 2007.5 to 2010.4 (for about
of 2 orbital periods of HD 160691b). They made a detailed reduction
of the observations and reported the results. Overall, the accuracy
of the astrometric measurements ~20.6—0.7 mas, and the residuals to
5-elements canonical astrometric solution (no companions present)
are estimated on the level of ~1-2 mas. However, the periodogram
analysis of these residuals, which might contain unmodelled factors
and a signature of companions, does not show any significant period
overlapping with the known orbital variability from the RV analysis.
Unfortunately, also analysis of the proper mean motion based on
the HST measurements by Benedict et al. (2022), and Hipparcos
(van Leeuwen 2007) by Brandt (2021), respectively, relative to the
estimates in the Gaia DR3 catalogue indicate that there is a marginal
or lack of a measurable difference between the proper mean motion at
the initial and the final epochs for 25 yr. That means there is difficult to
detect a significant acceleration caused by the planetary companions,
which was used, for instance, to astrometrically constrain the mass
of the innermost planet HR 8799¢ in Brandt et al. (2021b).

Given the negative detection of any of the companions, Benedict
et al. (2022) estimated the lower mass limits for HD 160691b,e,c as
4.3,7.0,4.4) MJyps respectively, which could be consistent with
a low inclination of the system below I = 30°. Moreover, they
claim that inclinations in their sample of multiple-planetary systems
are biased towards small values, / >~ 30° and less. As we show
below, for HD 160691 this can be verified based of the RVs data
alone.

Although the parallax of the system is large, I1 ~ 64 mas,
the relatively small semimajor axes of the planets, compared to
other astrometrically detected systems, translate to weak astrometric
signals. To illustrate this effect, and to predict if the system may
be characterized astrometrically by the ongoing Gaia mission, we
simulated detection limits with the Intermediate Astrometric Data
(IAD) from the Hipparcos and Gaia surveys. For this purpose,
we used the HTOF package by Brandt et al. (2021a) which makes
it possible to combine data from both missions, including IAD for

Gaia simulated with the help of Gaia Observation Forecast Tool
(Gaia Collaboration 2021, GOST).

The results are illustrated in Fig. 1. The left-hand panel is for
the detection limits for outer, massive planets assuming that the
inclination / = 90° and masses are minimal (a less favourable
scenario). Then, assuming a superior mean accuracy of >~ 96 Gaia
measurements scheduled by the end of 2022, with the mean uncer-
tainty o ~ 50 mas in the anticipated DR4 catalogue, and IADs from
Hipparcos , we would easily detect the outermost pair of Jupiters.
Note that the border of detection zone marks the astrometric detection
criterion of Ax? > 30 by Perryman (Brandt et al. 2021a), when
Ax? = 0 applies to the free motion of the star. However, the inner
Saturn-mass planet remains deep below the detection limit (blue-
shaded region).

The situation is dramatically worse, if a hypothetical data accuracy
~(.7 mas is close to the HST FGS astrometry. Even if the system
inclination is statistically most likely for / = 60° or smaller, consistent
with the inclination bias reported in Benedict et al. (2022), [ =
30°, scaling the minimal masses by a factor of ~ 20 per cent and >~
100 per cent, respectively, only the outermost planet could be barely
detected with the astrometric time-series.

Unfortunately, these arguments and simulations leave little hope
that a re-analysis of the available astrometric data may change the
results and conclusions in Benedict et al. (2022) and Brandt (2021).
Therefore we abandoned the HST astrometry from further analysis,
and we focused on the RV observations only.

2.2 Radial Velocity data

We considered three slightly different sets of the RV measurements
for ;v Arae available in public archives and sources.

The RV data set D; consists of 380 measurements spanning
6317.5 d. They are collected with three instruments: CORALIE
(Dcorarig), UCLES (Dycies), and HARPS (Duarpsi.2). This set
is literally the same as in Benedict et al. (2022), and we obtained it
from the author (private communication). In densely sampled parts
of the observational window, the data were binned if there was more
than one measurement made during a night. The mean uncertainty
is different for individual spectrometers, and varies between (o) ~
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1 ms~! up to a several ms~! for CORALIE. Moreover, Benedict

et al. (2022) considered HARPS observations in two disjoint sets:
from Pepe et al. (2007) and the second part of the time-series after
that date from Trifonov et al. (2020). They attributed different RV
offsets to these sets.

We also compiled a second data set D,. Trifonov et al. (2020)
derived the RV velocities from spectra obtained prior — and post —
the HARPS upgrade in May 2015, and corrected them for various
systematics and instrumental effects. Since the available data for
HD 160691 contains effectively only two post-upgrade measure-
ments made in nights of 2015 June and July, we skipped these points
from the orbital analysis. It would be difficult to account for two free
parameters, o sand Vy = Vo, ucLEs, to be statistically determined with
the RV subset comprising of only two datum. Moreover, because the
post-upgrade HARPS epochs overlap with UCLES measurements,
skipping them unlikely may change the model results. We also get rid
of two free parameters. Similarly to Benedict et al. (2022), we also
binned densely sampled measurements, but with a smaller interval
of 0.1 d. Before doing that, we removed several points from the
HARPS RV time series in Trifonov et al. (2020), with heavily
outlying uncertainties of 10-24ms~', given the mean uncertainty
omarps =~ 1 ms~!. The problematic measurements appear around
JD 2453169 (2004 mid-June), when literally hundreds of spectra
were taken overnight. Removing these points should not cause any
problem, due to the dense sampling and binning. For the binned data
in set D,, we adopted the uncertainties as the mean uncertainty in a
given bin.

In this way, the data set D, consists of the whole pre-upgrade
HARPS measurements Dyagrps, as a homogeneous data set from
Trifonov et al. (2020), and Dcorarie and Dycygs from Benedict et al.
(2022). This set has 411 measurements and also spans 6317.5 d. To
simplify presentation of the RV offsets, we subtracted the mean value
of all RVs in a given subset from individual RVs in this subset.

Finally, in some experiments we considered data set D3 composed
of 349 measurements from the pre-upgrade HARPS and Dycygs
from Benedict et al. (2022). These RV time-series span the same
time interval as D, does. This data set D5 lacks the less accurate
DcoraLie RVs.

2.3 Keplerian versus Newtonian Radial Velocities

The mathematical models for the RV velocities are well known.
However, to keep the presentation self-consistent, and to cover some
nuances, we will briefly recall the required material.

Since, following the prior literature, we expect that the p Arae
orbits may be quasi-circular, to get rid of weakly constrained
longitudes of pericentre ; when eccentricities e; ~ 0, we introduce
Poincaré elements {x; = ¢; cosw;, y; = ¢; sinw;}, i = 1, 2, 3, 4.
Also, the mean anomaly M at the selected initial epoch #, denoted
as M; = M, (1) is defined through the III law of Kepler, but written
for the Jacobian reference frame

P =2 a} M) = M+ 2 — 1)
i =<7 s i = i - U= ,
k2 (mg +my +...m;) p; 0

M

where k is the Gauss constant, and P;, a; stand for the orbital period
and semimajor-axis for each planet, respectively.
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Regarding the Keplerian parametrization of the RV, we apply the
well-known canonical formulae (Smart 1949) due to the presence of
planets

Npi
C) = VX0 =Y Kilei coswi +cosv; + )] &)
i
Npi
= Z K; [x,- + (x7 + y,—z)_]/2 (x; cos v; — y; sin vi)] , 3)
where w = @ for a coplanar system, v = v(f) denotes the

true anomaly of a planet, Ny is the number of planets in the
system, and v = v(P, e, M(¢)). To characterize the orbit of the
ith planet, we need to know five free orbital elements: ; =
[K;, P;, x; =e; cosw;, y; = e; sinw;, M;], where the RV semi-
amplitude K; depends on the minimal mass of the planet m;sin/,
when the inclination / = 90°.

Let us note that we interpret the RV signal in terms of the
geometric elements inferred in the Jacobian frame of reference. We
follow here conclusions and discussion in Lee & Peale (2003), to
properly express parameters of the Keplerian model through the
N-body initial condition. We need that to investigate the long-
term stability of the system with the numerical integrations. For
relatively massive planets, the Jacobian (canonical) elements account
for indirect interactions between the planets on Keplerian orbits to
the first order in the masses (the ratio of planet masses to the star
mass), see also Gozdziewski et al. (2012) for more details.

In order to derive the N-body initial condition from the fitted
Keplerian elements 8;,i =1, ..., Ny, we first determine the minimal
masses m;sin I = m; and semimajor axes ¢; of the planets. The semi-
amplitude K; of the RV signal determines the relation

) ( 2 ) m;

K i 1-— e =da; | — s

Pl' (m0+m1++m,)
where the a; constrained by the observationally derived orbital period
P; obeys equation (1), and m stands for the star mass. Eliminating a;,
we obtain a cubic equation for the unknown masses, which may be
subsequently solved form;,i=1,2,. .., based on analytical formulae
or with a simple Newton—Raphson scheme (a few iterations suffice
to reach the machine accuracy). Then we transform the geometric
elements to Cartesian coordinates and velocities with the standard
two-body formulae, where the gravitational parameter for the ith
planet is w; = K*(mo + my + ... m;).

To determine parameters of the orbital model explaining the
RV time-series, we optimized a canonical form of the maximum-
likelihood function £ (Baluev 2009):

1 0-0);, 1 1
e 3 ( 652.,)” -3 ;mgg, — 5 Ney In2r, 4)

it

where (O — C);, is the (O—C) deviation of the observed 7-th RV
observation, with the uncertainty 67, — o7, + o7, with o parameter
scaling the raw error o; ,in quadrature, and Ny is the total number of
the RV observations. We assume that the uncertainties are Gaussian.

The error floor factors a]% are different for each telescope, as
they may involve not only the intrinsic, chromospheric RV stellar
variability (stellar jitter), but also instrumental uncertainties inherent
to each telescope and the RV pipeline. The RV model also involves
individual offsets of the zero-level RV for each instrument. Distin-
guishing between these two parameters is important even for the
same spectrometer and different setups of its work. For instance, the
upgrade of HARPS optical fibres around the middle of 2015 changed
the instrumental profile and thus the RV offset between the pre- and
post-upgrade RVs. To complicate things even more, the RV offset



may be not the same for all stars and may even depend on the stellar
spectral type (Trifonov et al. 2020).

Therefore fitting the jitter uncertainties as free parameters of the
model is crucial to obtain adequate statistical representation of the
RV data. We may note here, that in the past, these parameters have
been fixed based on the averaged values for chromospherically quiet
stars of a given spectral type. That recently outdated (and somewhat
incorrect) approach was used by Gozdziewski et al. (2007) and Pepe
et al. (2007); Benedict et al. (2022) tuned the RV uncertainties to
obtain x2 ~ 1.

Usually, the Keplerian model determines sufficiently accurately
the N-body, exact RVs. However, for systems with large-mass plan-
ets, this equivalence may be questionable, especially if the interval of
the RV time series becomes long. Then we have to introduce the self-
consistent model that requires solving the Newtonian equations of
motion. The RV due to the planets is the velocity component of the
star along the z-axis w.r.t. the barycentre of the Solar system

Npi

1
CO =V =~ 3 ma, )

i=1

which is parametrized through planet masses and the osculating
orbital elements 0; = [m;, a;, x;, y;, M;] for each planet in the
system. Here, as the osculating epoch we select the epoch of the
first observation in the time series. In some experiments, we also
selected the osculating epoch in the middle of the data window.

Expressions for the RVs, equations (2) and (5) have to be
accompanied with the instrumental zero-level offsets Vj ;, j = 1,
..., M that makes it possible to compute (O — C)(¢) in equation
(4). For Np-planets forming a coplanar system observed with M
instruments, we have therefore p = SN + 2M free parameters to be
fitted to 1D time series of the RV observations.

The definition in equation (4) is constructed so the best-fitting
models should yield x2 = x2/(Nry — p) ~ 1,and x? cannot be used
to compare the models quality. Instead, Baluev (2009) proposed to
use:

InL = —1InL/Nry — Inen)/2,

where L is expressed in ms™'. This statistics is suitable to assess
the relative quality of fits, since L ~ (o) measures a scatter of
measurements around the best-fitting models, similar to the common
RMS - smaller L means better fit.

In order to localize the best-fitting solutions in the multidimen-
sional parameter space, we explore it with evolutionary algorithms
(GEA from hereafter, Charbonneau 1995; Rucinski, Izzo & Biscani
2010). We then perform the MCMC analysis in the neighbourhood
of selected solutions using an affine invariant ensemble sampler
(Goodman & Weare 2010) encompassed in a great emcee package
(Foreman-Mackey et al. 2013). The computations were performed
in multi-CPU environment, making it possible to evaluate 128 000-
256 000 (or more) of 144-384 emcee ‘walkers’ from a small-radius
ball around a solution found with the GEA.

We select all priors as flat (or uniform, improper) by sufficiently
broad ranges on the model parameters, e.g. P; € [1, 10000] d, x;, y;
€ [-0.25,0.25], m; € [0.1, 14] myp, (i = 1, 2, 3, 4), the error floors
(jitters) oz; > 0 ms~!,j=1,..., M. In a few experiments with
the N-body model, we also tested Gaussian priors for the (x, y;)
elements of the innermost planet, with the mean equal to zero and
variances o, , = 0.05, 0.075, 0.1, respectively. In this case, however,
the results of sampling did not substantially change, compared to the
flat priors.
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2.4 The best-fitting orbital configurations

We first performed an extensive search for the best-fitting solutions
using GEA, and we collected ~103 solutions for the data sets
and model variants. We found that the best-fitting Keplerian and
Newtonian models with L ~3.2ms~! (RMS ~ 3.4 ms~!) have well-
determined extrema of In £ for orbital periods P; of roughly 9.64,
308, 645, and 4030 d, respectively. Also, all osculating eccentricities
are limited to moderate values, roughly in the range of 0.02-0.1.

The resultig best-fitting parameters for data sets D; and D, are
given in Tables 1 and 2. The best-fitting Keplerian model Fit IIK in
Table 2 is illustrated in Fig. 2, left-hand panel. Using this solution
as an example, we checked the consistency of the Keplerian and
Newtonian parametrization. We transformed Fit IIK as osculating
elements for the epoch of the first observation 7y =JD 2450915.29
in the UCLES data, as described in Section 2.3. We then computed
the Newtonian RV signal through of numerical integration of the
N-body equations of motion for the entire four-planet system with
the IAS15 integrator (Rein & Spiegel 2015). It turns out that the
difference ARV(¢) = VrN(t) — V,.K(t) increases in an oscillatory
manner, reaching about 10 m s~!, which exceeds more than twice
the RV signal from the innermost planet (red curve in the residuals
diagram in Fig. 2).

To verity this effect globally in the parameter space, we performed
the MCMC sampling with both the Keplerian and Newtonian RV
models. The final results for data set D, are illustrated in Fig. 3. (We
skip presentation of the results for D), since they are very similar).
This figure shows 1D and 2D projections of the posterior probability
distribution for selected Keplerian (top row) and Newtonian (bottom
row) orbital elements obtained for the innermost (left column) and
outermost (right column) planet, respectively. The posterior has well
defined extrema along all dimensions. We did not notice significant
correlations between the displayed parameters, except for x, y, and
M.

The quality of the best-fitting configurations, in terms of RMS
~ 3.4 ms™!, is also almost the same. Surprisingly, the posterior
distributions are not only very similar to each other, especially if we
compare the 2D shape distributions for x, y, and M, but also the
eccentricities and orbital angles closely overlap, e.g. the best-fitting
M4 anomaly differs by only 2° in these models.

How to interpret this apparent paradox, given the relatively large
masses of Jupiter-like companions and their significant, mutual
interactions over the observing interval, illustrated in Fig. 27 A direct
comparison of the RV signals may be biased because the accuracy of
the formal two-body Keplerian element transformation to Cartesian
coordinates is limited to the first order in masses (e.g. Gozdziewski
et al. 2012). However, the representation of the Keplerian initial
condition for the N-body problem may better fit the data if it
is tuned within the parameter uncertainties. Therefore, given well
bounded orbital elements, the MCMC sampling reveals globally
similar posteriors for both models.

We also see the posteriors for the near 2e:1b MMR pair of the
Saturn—Jupiter-mass planets exhibiting some significant differences
(see on-line Supplementary Material, Fig. S1). This can be explained
by their relatively shorter periods, covering ~ 20 and >~ 10 times the
observational window, respectively, and the 2e:1b MMR proximity,
which strengthens the mutual gravitational interactions.

The MCMC experiment implies that, keeping in mind the lim-
itation for representing individual ICs, we can still use Keplerian
MCMC sampling to efficiently explore the parameter space, in
terms of the posterior distribution, especially for highly hierarchical
configurations with large period ratio. Note that P,/P; ~ 400 for
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Table 1. Best-fitting parameters of the « Arae (Cervantes) system for the Keplerian (Fit IK) and Newtonian (Fits IN) parametrization,
data set Dy. The osculating epoch is the date of the first observation in the UCLES data set. The system is coplanar with the inclination
I = 90° and nodal longitudes 2 = 0°. The stellar mass is 1.13 mg (Bonfanti et al. 2015) as used by Benedict et al. (2022), and
close to 1.10 £ 0.02 mg in Soriano & Vauclair (2010). The RV offsets are computed w.r.t. the mean RV in each individual data
set. Uncertainties are estimated around the median values p, i.e. [u — o, u + o] as the 16th and 86th percentile of the samples.
Numerical values for Fit IN selected from the MCMC samples with low RMS are quoted to the 7th digit after the dot, to make it
possible to reproduce the dynamical maps and direct numerical integrations. The mean longitude A = @ + M at the epoch was
computed from the MCMC samples.

Planet HD 160691d (Dulcinea, 1) HD 160691e (Rocinante, 2) HD 160691b (Quijote, 3)  HD 160691c¢ (Sancho, 4)
Fit IK (Keplerian model of the RV, data set D, RMS = 3.4m s7h
K(@ms™h) 2.954+0.19 13.22 £ 0.34 36.47 £ 0.22 23.17 £0.33
P (d) 9.638 £ 0.001 308.75 £ 0.29 645.00 £+ 0.36 4060 £ 27
ecos w —0.104 + 0.063 —0.093 £ 0.014 0.058 £0.011 0.022 £0.012
esinw —0.059 £+ 0.063 —0.014 +£0.017 0.023 £ 0.008 0.032 £0.013
e 0.137 £ 0.056 0.096 £ 0.014 0.063 £ 0.010 0.040 £0.013
w (deg) 210 + 32 189 £+ 10 21.6+(9.4,8.2) 559+ 175
M (deg) 2233+ 32 66.7 + 10.5 272.54+(8.3,9.4) 1859 £ 17.2
A (deg) 73.3 +10.5 2554 +£3.9 2940+ 1.0 2419 £2.2
Vo (ms™!) CORALIE: 13.04 £ 0.42, UCLES: —7.80 £ 1.20, HARPS;: 1.0 &+ 0.3, HARPS;: —4.20 £+ 0.32
of(m ) CORALIE: 1.30 + 0.21, UCLES: 6.1 &+ 1.1, HARPS;: 0.62 £ 0.46, HARPS;: 1.67 & 0.40
Fit IN (Newtonian model of the RV, data set D, RMS = 3.4 ms™!)
msin I (myyp) 0.033 £ 0.002 0.477 £0.012 1.680 £+ 0.010 1.978 £ 0.028
0.0333733 0.4805150 1.6894371 1.9415698
a (au) 0.092319 4+ 6 x 10~¢ 0.9376 £ 0.0015 1.521 + 0.001 5.243 £+ 0.023
0.0923201 0.9358533 1.5204938 5.2228363
ecos w —0.086 + 0.067 —0.060 +0.014 0.057 £ 0.012 0.018 £ 0.012
esinw —0.063 + 0.067 —0.031 £ 0.015 0.016 £ 0.008 0.026 £0.012
e 0.127 £ 0.057 0.069 £+ 0.014 0.060 £ 0.011 0.034 £0.012
0.0093112 0.0729955 0.0563256 0.0378130
w (deg) 2154+(36,38) 207.5+(11.4,11.9) 16.44(10.3,8.2) 56.4 +21.0
52.8721947 217.8362502 19.7788422 52.2928770
M (deg) 218+(34,38) 53+ 14 278+(9,10) 187 £(21,20)
25.8318188 36.6741123 272.3695792 187.6140820
X (deg) 76.9 + 10.7 260.0 £+ 4.0 2933+ 1.1 243.1 £ 2.1
Vo (ms™1) CORALIE: 13.10 4 0.43, UCLES: —7.74 4+ 1.14, HARPS;: 1.10 & 0.30, HARPS,: —3.94 + 0.32
oy (m s CORALIE: 1.23 £ 0.20, UCLES: 5.88 + (1.07,0.93), HARPS;: 0.45 &+ 0.40, HARPS;: 1.51 + 0.36

HD 160691. However, direct parametrization in terms of the N-
body dynamics is obviously more accurate approach to explain
the RV variability when considering individual (local) best-fitting
models.

To justify the above explanation, we compared the outcomes of
the Keplerian and Newtonian fits for data set D, in Table 2, and
the results are illustrated in the (O—C) diagram in the right panel
in Fig. 2. This time, the difference between the signals plotted
as a red curve in the residuals diagram has much less variability,
with the largest differences ~5ms~' appearing for epochs without
data.

As noted above, an important feature of the posterior distributions
is well bounded parameters for all planets. In particular, the semima-
jor axes of the middle pair, near 2e:1b-MMR (Rocinante—Quijote)
are constrained to ~20.0015-0.002 au, and for the outermost Sancho
planet to just ~0.02 au, i.e. its orbital period may be determined with
the uncertainty of one month (25-50 times better than with the data
in 2006). That seems to be quite surprising, since the observational
window covers only about 1.5 times the period of this companion.
Similarly, the Poincaré elements (x; = e;cos @, y; = e;sinw;) of
the Saturn- and Jovian planets may be determined to £0.01, with
uncertainties of the arguments of pericentre and the mean anomalies
at the osculating epoch 7y on the level of +15°. This translates to
the mean longitude at the epoch A; that may be determined to =~ 4°.
The eccentricities in the Keplerian and Newtonian parametrizations
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(Tables 1-2) are at the 0.05 level with small uncertainties, as we will
show below, may be crucial for maintaining the long-term stability
of the system.

We should also comment on similarities and difference between
solutions derived for data sets D; and D, in this work, and with the
Keplerian model in Benedict et al. (2022).

We obtained very similar eccentricities of the planets, particularly
the innermost eccentricity constrained to e; >~ 0.1. Given the old
age of the star ~6.7 Gyr and short orbital period ~9.64 d of
the warm Neptune, its eccentricity might be tidally circularized.
We conducted direct numerical integrations of the system with
all planets for a few Myr using the SABA, integrator (Laskar &
Robutel 2001) with the step size of 0.5 d, and we did not detect
such a large eccentricity which could be forced by interactions with
the outer planets. Actually, HD 160691d seems to be a common
example in the known sample of warm Neptunes that exhibit non-
zero eccentricity, typically around 0.15 (Correia, Bourrier & Delisle
2020). They found mechanisms opposing gravitational tides, such as
thermal atmospheric tides, evaporation of the atmosphere, and the
eccentricity excitation from a distant companion. The later seems to
be not the cause of the moderate eccentricity of HD 160691d, but
the presence of atmospheric tides may be sufficient to explain its
moderate value.

The most significant difference between the solutions in Benedict
et al. (2022) and in this work is relatively shorter orbital period of
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Table 2. Best-fitting parameters of the p Arae (Cervantes) system for the Keplerian (Fits IIK) and Newtonian (Fits IIN)
parametrization, data set D;. The osculating epoch is the date of the first observation in the UCLES data set. The system is

coplanar with the inclination / = 90° and nodal longitudes € = 0°.

The stellar mass is 1.13 mg (Bonfanti et al. 2015) as used by

Benedict et al. (2022), and close to 1.10 £ 0.02 mg, in (Soriano & Vauclair 2010). The RV offsets are computed w.r.t. the mean RV in
each individual data set. Uncertainties are estimated around the median values u, i.e. [© — o, u + o] as the 16th and 86th percentile
of the samples. Numerical values for Fit IIN selected from MCMC samples with low RMS are quoted to the 7th digit after the dot, to
make it possible to reproduce the dynamical maps and direct numerical integrations. The mean longitude A = @ + M at the epoch

was computed from the MCMC samples.

Planet HD 160691d (Dulcinea, 1) HD 160691e (Rocinante, 2) HD 160691b (Quijote, 3)  HD 16069 1c (Sancho, 4)
Fit IIK (Keplerian model of the RV, data set D>, RMS = 3.4m s7h
K (ms™ 1) 2.84 £0.17 12.36 £ 0.30 35.81 £0.20 22.7+0.26
P () 9.638 + 0.001 308.36 £ 0.29 644.92 +£0.29 4019 +24
ecos w —0.052 +£0.037 —0.073 £0.014 0.036 £ 0.011 —0.001 +£0.011
esin @ —0.024 £+ 0.040 —0.012 £0.017 0.025 £ 0.008 0.054 +0.011
e 0.071 £ 0.034 0.076 £ 0.014 0.045 £+ 0.008 0.055 £ 0.011
w (deg) 204 + 41 189 £+ 13 35.1+(14.3,12.6) 91+ 12
M (deg) 225 +(41,44) 62 + 13 258.3£(12.5,14.3) 147 £ 11
A (deg) 69.0 + 10.5 250.7 £ 4.1 293.4 + 0.9 2377+ 1.9
Vo (ms™h) CORALIE: —7.36 + 1.10, UCLES: 0.77 £ 0.25, HARPS: 2.12 + 0.20
of(m s7h CORALIE: 5.33 4+ 0.99, UCLES: 0.68 + 0.49, HARPS: 1.80 &+ 0.14
Fit IIN (Newtonian model of the RV, data set D>, RMS = 3.4ms~!)
msin I (myyp) 0.032 + 0.002 0.448 +£0.011 1.65 + 0.009 1.932 + 0.022
0.0297566 0.4558348 1.6608084 1.9478583
a (au) 0.092319 £ 5 x 107°¢ 0.9347 £+ 0.0015 1.522 + 0.001 5.204 + 0.021
0.0923174 0.9342193 1.5209196 5.2065203
ecos w —0.065 £+ 0.050 -0.047 £ 0.013 0.035 +£0.011 —0.003 +0.011
esin w —0.034 £ 0.050 -0.026 £ 0.014 0.019 £+ 0.008 0.047 £0.011
e 0.090 + 0.042 0.055 +£0.014 0.041 £ 0.009 0.049 £ 0.011
0.0172379 0.0447130 0.0423168 0.0242568
@ (deg) 2074(39,41) 209+(13,14) 28+(16,13) 94.1 + 134
285.3319635 215.5470967 14.4134097 88.4886424
M (deg) 2214(40,44) 454(16,15) 265+(14,16) 145 £ 13
147.4681451 39.3680159 276.3668580 150.2821658
A (deg) 71+ 10 254.6 £ 4.4 293.0+ 1.0 239.0+ 1.9
Vo (ms™h) CORALIE: —7.2 + 1.1, UCLES: 0.87 £+ 0.26, HARPS: 2.25 + 0.19
of(m s7h CORALIE: 5.3 &+ 1.0, UCLES: 0.48 4+ 0.42, HARPS: 1.69 +0.14

HD 160691c, by ~100 d (yet only ~ 2 per cent) in Benedict et al.
(2022). They report this solution as strongly unstable in 100 Kyr
time-scale, in contrast to our models, which appear safely stable in
extended regions of the parameter space, for at least 6.7 Gyr, as
discussed below.

We attempted to address outlying UCLES measurements, visible
on the right end of the observation window (Fig. 2). There are
systematic deviations from the synthetic model, reaching ~10ms~!,
and unlikely they can be eliminated with the standard RV ephemeris.
The HARPS and UCLES epochs overlap almost throughout the
time window, but the HARPS measurements do not deviate as
systematically as the UCLES data from the common model. This can
be explained by a long-term instrumental UCLES effect. In order to
account for it, we added a periodic drift to the Keplerian RV model
for the UCLES data RV g, (1) = Acos (nt + ¢o), where A, n, and ¢
are the semi-amplitude, frequency, and relative phase of the signal,
respectively.

As the result of the MCMC sampling of the Keplerian model
with this modification, we show (O—C) for the best-fitting model in
Fig. 4 and a section of the corner plot for the posterior with offsets,
error floors, and drift parameters (on-line Supplementary Material,
Fig. S2). Note that in this case we analyzed only the concurrent
HARPS and UCLES RV series (data set Dj3). It turns out that the
drift component can significantly reduce the UCLES outliers. The
drift correction reduces the RMS value to 2.5 ms~!, which is almost

1 ms~! less than the value for the unmodified model. However,
the posterior distributions reveal that the drift’s long period P =
2m/n >~ 36 yr cannot be meaningfully constrained. Moreover, its
half-amplitude A ~ 12-15 ms~! is weakly limited on the right end,
and strongly correlated with the RV offset Vj » = Vj ucigs, as it is
labeled in the corner plot for the UCLES data. At the same time, the
orbital parameters have not changed except for the period of Py =~
(3944 + 27) d, significantly shorter than P4 =~ 4020-4060 d in our
models without drift, but similar to P4 >~ 3947 d in the solution of
Benedict et al. (2022).

Given some variability in the residuals to the Keplerian and
Newtonian models in Fig. 2, we analyzed them with the Lomb-
Scargle periodogram, in the period window from 2 d to 64000 d.
The results are shown in Fig. 4. Indeed, the (O—C) in the left-hand
panel for the Keplerian 4-planet model to the data set D, shows
some signature of the long-term drift. However, we did not detect
any significant peak at the 1 per cent false alarm probability estimated
by the bootstrap method at a level of ~0.07. We performed the same
test on the residuals to the Keplerian 4-planet model with sinusoidal
drift added to the UCLES data. It is clear that the long-term drift
period has disappeared, and there are still no significant peaks in the
high frequency range. The (O—C) analysis suggests that we could not
detect any significant RV signal that can be attributed to a new planet
in the system.
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Figure 2. Left-hand panel: synthetic curves of the best-fitting Keplerian model to D, data set, depicted as Fit IIK in Table 2 (light-green curve) and its
Newtonian interpretation (light-blue curve) overplotted on the RV data. The difference between the RV signals illustrates a red curve in the residuals (O-C)
panel for the Keplerian ephemeris. Symbols describe the RV measurements from different spectrometers: green pentagons are for CORALIE, brown/red circles
are for HARPS and blue diamonds are for UCLES. Error bars in the (O—C) diagram include the error floor parameters. The shaded rectangle marks the
time-span of the RV data in Gozdziewski et al. (2007) and Pepe et al. (2007). Right-hand panel: Synthetic curves of best-fitting Keplerian (light-green curve) and
Newtonian models (light-blue curve) to D, data set, depicted as Fit IIK and Fit IIN (Table 2), and overplotted on the RV data. The difference between the signals
illustrates a red curve in the Keplerian residuals (O—C) panel. Parameters of the models correspond to the maxima of posterior samples. Symbols describe the
RV measurements from different spectrometers: green pentagons are for CORALIE, brown circles are for HARPS and blue diamonds are for UCLES. Error
bars in the (O-C) diagram include the error floor parameters, and the shaded region is the RV data span prior to the analysis conducted in 2006.

These results are consistent with the conclusions in the work of
Benedict et al. (2022). They did not detect any correlation of the
RV variability attributed to the planets with the periodicity of the
spectral line profile distortion indicators. They found peaks of the
bisector with low significance, around 357-368 and 497 d, which
can be explained by stellar activity.

Since the inclusion of RV drift appears problematic due to the
strong Vj»—A correlation, and the drift-modified model does not
actually qualitatively change the orbital architecture and stability of
the system (as justified below), other than shortening the outermost
orbital period by =~ 2 per cent, we have abandoned this model.
However, the likely instrumental nature and origin of the UCLES
RV-outliers remains unexplained.

3 LONG-TERM STABILITY OF THE SYSTEM

The well bounded best-fitting parameter ranges make is possible
to simplify the analysis of the dynamical character of the system.
We conducted it with two fast dynamical indicators, the Mean
Exponential Growth factor of Nearby Orbits (MEGNO, (Y); Cincotta
et al. 2003) and the Reversibility Error Method (REM; Panichi
et al. 2017). These numerical tools are CPU-efficient variants of
the Maximal Lyapunov Exponent (MLE) that make it possible to
detect unstable solutions and visualize the structure of the phase
space.

The usefulness of the MEGNO method in analyzing the dynamics
of planetary systems with strongly interacting companions has been
proven for a long time (e.g. GoZdziewski et al. 2012, and references
therein). We have also shown in Panichi et al. (2017) that the REM
indicator is not only equivalent to MEGNO, but may be also much
more CPU-efficient. Briefly recalling the idea of this algorithm,
computing REM relies in comparing the difference between the
Cartesian initial condition x after integrating it numerically forward
and back, for the same number n of time-steps At, using a time-
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reversible numerical scheme, to obtain the final state x(+nAr). Then
the REM indicator is

REM = ||x — x(£nA1)]||. (6)

This difference grows exponentially with integration time for chaotic
systems, and at a polynomial rate for regular (stable) configurations.
Such a simple algorithm can be implemented with a symplectic
discretization scheme. In practice, for systems with small and
moderate eccentricities, which p Arae systems appear to be, we
use the classic leap-frog algorithm (e.g. Laskar & Robutel 2001)
with symplectic correctors of the order 5 (Wisdom 2006), offering
numerical accuracy and efficiency comparable to higher order meth-
ods (Wisdom 2018), see also Panichi et al. (2017) for details. As
we have shown, in the later paper, this REM algorithm is partic-
ularly useful in regions of phase space with predominantly stable
solutions and outperforms then any MEGNO variant in terms of
CPU-efficiency.

In this work, to speed-up computations, we conducted the numeri-
cal simulations using our FARM code parallelized with the Message
Passing Interface (MPI). For the numerical integrations of the N-
body equations of motion for individual ICs, we used the SABA4
symplectic scheme (Laskar & Robutel 2001) as well as Everhardt’s
algorithm implemented in the REBOUND package (Rein & Spiegel
2015).

3.1 Stability of the model based on data set D;

We first computed the 2D dynamical maps in the neighbourhood of
the Newtonian Fit IN in Table 1, based on the original data set D,
from Benedict et al. (2022). Fig. 6 illustrates the (a3, e3)—plane. In
these scans, all other orbital elements are kept at their best-fitting
values listed in Table 1. To make possible reproduce the results, we
quote exact numerical values of the elements and masses. For each
initial condition in the grid, the equations of motion were integrated
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Figure 3. 1D and 2D projections of the posterior probability distribution for orbital parameters of the innermost (left column) and the outermost (the right
column) planet, respectively. The top row is for the Keplerian model, and the bottom row is for the Newtonian model to data set D,. The parameters are
expressed in units consistent with Table 2. The semi-amplitude K; is equivalent to the mass m;, and the orbital period P; is equivalent to the semimajor-axis a;.
The MCMC chain length is 180 000 iterations for each of 384 different instances (walkers) selected in a small ball around a best-fitting solution found with the
evolutionary algorithms for the Keplerian model, and 294 000 iterations in each of 176 walkers for the Newtonian model. Parameter uncertainties are estimated

as 16th and 84th percentile samples around the median values at 50th percentile.

up to 200 Kyr, corresponding to ~ 1.8 x 10*P,. This time interval
allows for the detection of short-term chaotic motions for the time-
scale of the MMRs instability (e.g. GoZdziewski & Migaszewski
2018).

Some of the dynamical maps were computed for 3-planet systems
with the most massive planets, omitting the innermost warm Neptune.
Its very short orbital period of 9.64 d compared to that one of the

outermost planet (=~4000 d) causes a huge CPU overhead. Before
that, we investigated whether the presence of Dulcinea could affect
the orbital evolution of the other massive companions and such 3-
planet maps. To this end, we numerically integrated the systems
described by Fit IN, with and without the warm Neptune, for several
Myr, when secular effects may already play a role. Fig. 5 illustrates
the resulting osculating semimajor and eccentricity over a narrow
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respectively. Red filled circles mark the orbital periods of the detected planets.
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Figure 5. Temporal evolution of the osculating semimajor axis (top panel)
and eccentricity (bottom panel) for planet HD 160691b in a narrow time
window around 2.8 Myr. In each panel, curves with different colour illustrate
solutions for two ICs, with and without the innermost planet. In the later case,
we added its mass to the mass of the star. Elements of the planets included in
the integrated system in both experiments are the same (Fit IN, Table 1). The
systems were integrated with the SABA4 symplectic scheme with the step
size of 0.5 d.

time interval around 2.8 Myr for Quijote (HD 160691b). Clearly, the
elements span the same ranges and evolve along curves with very
similar shapes. Their de-phasing is due to a small change of the mean
motion and other elements. The most significant shift can be seen
for Sancho (HD 160691c, not shown here), yet its semimajor axes is
shifted by ~0.002 au, roughly 10 times less than 1o uncertainty for
this orbital element.

To study whether the innermost planet can be omitted from the
system for long-term integrations, Farago, Laskar & Couetdic (2009)
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averaged the model for the fast orbiting innermost planet. Obviously,
such an analytical model is numerically as CPU efficient, as the 3-
planet model. Moreover, they found for the particular @ Arae case
the results from three formulations of the orbital evolution: the exact
(averaged) one, the 3-planet model with omitted warm Neptune, and
the 3-planet model with its mass added to the mass of the star lead
to barely distinct results.

To test this independently, and without any simplifications of
the equations of motion, we used the REM indicator directly and
compared dynamical maps for the 3- and 4-planet configurations,
respectively, for the same ranges of orbital parameters.

We start with the upper-left panel in Fig. 6 for a relatively broad
region of the ICs marked with a star symbol. That map was computed
without the innermost Neptune, using the leap-frog scheme and
a time-step of 8 d. A wide structure around a3 =~ 1.47 au on the
left of this IC corresponds to the 2b:1c MMR of the inner pair
of Saturn—Jupiter-mass planets. Given the small 1o uncertainty
0.001 au of the nominal semimajor axis, the separation of the best-
fitting configuration from this MMR is meaningful (the error bars
are smaller than the symbol radius). Simultaneously, the ICs is
located between three narrow strips of unstable solutions that may
be identified with higher order resonances. Close-up maps in the
remaining panels of Fig. 6 reveal a very close proximity of the ICs
to one of these strips.

Panels in the bottom row are for the same (a3, e3)-plane, but
scanned with (Y) for the 3-planet model (bottom-left panel) and
with REM calculated for the full 4-planet configuration (bottom-
right panel), but with a much smaller step size of 0.33 d and lower
resolution compared to the 3-planet REM-map computed with the
leap-frog step-size 8 d (upper-right panel). Of course, this is forced
by the short orbital period of HD 160691d. The maps clearly illustrate
the one to one results, in aregion with weakly unstable configurations
and different, very fine dynamical structures. We may note that the
ICs is negligibly shifted by ~10~> au with respect to the unstable
structure, between the 3-planet and 4-planet scans.

While the REM map for three planets was calculated several
times faster than the (Y) map, the full REM calculation for four
planets was more than 15 times slower per pixel. Such over-
head is acceptable, however, given that the calculations were per-
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Figure 6. Dynamical maps for the best-fitting N-body Fit IN (Table 1) to data set D;. Top-right and bottom panels are for a close-up of the scan shown in
top-left panel. The fast indicators log |REM| < —4 and (Y) =~ 2 characterize regular (long-term stable) solutions, which are marked with black/dark blue colour;
chaotic solutions are marked with brighter colours, up to yellow. The integration time of each initial condition is 200 Kyr (~1.8 x 10* x P4). Panels in the
right column are for the 3-planet model omitting the warn Neptune, and for the full 4-planet configuration, respectively. The REM indicator was computed with
the leap-frog with the step size of 8 d (3-planet map) and 0.33 d, respectively (bottom scan). The MEGNO scan (bottom-left panel) was computed for 3-planet
model with the Gragg—Bulirsch—-Stoer (GBS) algorithm (Hairer, Ngrsett & Wanner 1993; Hairer & Wanner 1996). The asterisk symbol means the position of
the nominal model. Diamond and triangle symbols are mark the ICs tested with the direct numerical integrations for 6.7 Gyr, see the text. Resolution for the top
and bottom-left plots is 640 x 360 points, and 360 x 200 points for the bottom-right scan.

formed without any simplification of the Newtonian equations of
motion.

The detection of fine unstable structures and tiny islands of stable
resonances confirms once again a good sensitivity of the REM
algorithm for stable and unstable solutions. To show this better,
we interpreted the unstable strip structure through the numerical
analysis of the fundamental frequencies (NAFF; Laskar & Robutel
2001) of a particular system marked with a white diamond symbol
in a small stable island around (as, e3) >~ (1.5211 au, 0.01). This
island is a part of the three-body MMR 2e:—4b:1c structure (one
of the strips spanning e; € [0, 0.1]). We plotted evolution of a
selected critical angle of this resonance 6. _4. 1 = 2%, — 4A3 —
My + @y + w3 + wy in Fig. 7. This critical angle librates with large
amplitude around 180°, and the orbital configuration is perfectly
stable for at least 1 Gyr, consistently with its location in the stable
island.

In contrast, we selected formally unstable ICs by shifting the
nominal semimajor axis to the right (to the unstable strip) and marked
with a black triangle symbol (see close-up panels in Fig. 6). We
integrated this ICs for 6.7 Gyr with the SABA4 scheme and for

360 . ™ .
300 i
180 “ e ey i!'! S '_ L._ il
120 |

O0:0..4..1 [deg]

go[if4° Tidd

0 L 1 : L 1
150 200 250
time [Kyr]

300

Figure 7. Evolution of a selected critical angle 02,. _ap. — 1. of the three-body
MMR of the outer planets for the initial condition marked in dynamical maps
in Fig. 6 with a white diamond.

1 Gyr with the variable step-size IAS15 integrator. Also in this case
the system does not reveal any signature of geometric instability, in
spite of its formally chaotic character in the sense of MLE (it is not
illustrated here, but we invoke a similar example in Section 3.2.2).
The width of this third-order MMR is very small, Aas >~ 0.003 au,

MNRAS 00, 1 (2022)


art/stac2584_f6.eps
art/stac2584_f7.eps

12 K GoZdziewski

and the diffusion is likely so slow that it does not lead to a change or
disruption of the system.

We remark here that Benedict et al. (2022) found quite an opposite,
catastrophic instability of the system. In their Keplerian solution, P,
=~ (3947 £ 23) d is apparently the only significant difference with
our fits (Table 1). The origin of this discrepancy may be a subtly
different parametrization of the RV signal. For instance, Benedict
et al. (2022) did not fit the jitter uncertainties as free parameters,
but tuned it posteriori for each data set to obtain x> =~ 1. Moreover,
our models yield smaller RMS ~3.4ms~! rather than ~3.8 ms~! in
the prior work. A shorter period of P, 2~ 3947 d may be pointing
to an unstable structure close to a4 ~ 5.12 au (similar to that one
visible in the top-left panel in Fig. 10). We integrated the system
with the outermost planet Sancho placed in this unstable zone, but
the system survived for at least 1 Gyr. We could not reproduce the
strong instability reported in (Benedict et al. 2022), and we cannot
find any convincing explanation of this discrepancy.

3.2 Stability of the Newtonian model based on data set D,

As mentioned above, we also conducted the GEA and MCMC
analysis for data set D,. The results are very similar to the D; case.
However, there are some subtle qualitative changes with respect to
the models for D;. The eccentricities of the Jovian planets tend to
be systematically even smaller than for the D;-systems. Also the
semimajor axes and orbital periods locate the systems in even more
‘safe’, stable zone displaced from the 6b:1c MMR by more than
0.1 au, which corresponds to ~5¢ in terms of the semimajor axis
uncertainty.

3.2.1 The 2e:1b MMR proximity

Gozdziewski et al. (2007), Pepe et al. (2007) and Farago et al. (2009)
investigated the proximity of the inner pair HD 160691e-b to the
2e:1b MMR. In the two later papers, they found the best-fitting model
close to the separatrix, unstable zone of this resonance. Contour
levels of x2 encompass both the near-resonance and the resonant
configuration (Pepe et al. 2007, their fig. 7). In GoZdziewski et al.
(2007), we also found that the relative position of the ICs and the
shape of the 2e:1b resonance in the (as, e3)-plane strongly depend
on the semimajor axis of HD 160691c that could be only weakly
constrained to 1300 d (4-7 au) and eccentricity e, as large as 0.2
at the time.

We can now revisit this issue with a significantly updated Fit IIN.
To do so, we calculated the dynamical maps illustrated in Fig. 8 for the
3-planet (upper panel) and 4-planet (middle panel) configurations,
respectively. For the 3-planet model, we added the mass of innermost
Neptune to that of the star. It can be clearly seen that the two maps
coincide in each detail, and any shift in the position of the ICs relative
to the fine structures is barely noticeable.

The coordinates of the dynamical maps were chosen to match
the NAFF maps in (Pepe et al. 2007, their fig. 7) and in (Farago
et al. 2009, their fig. 3). Since a direct comparison of the maps is not
possible, due to changes in elements in the ICs, we have marked with
a diamond a qualitative position of the former initial state relative
to the approximate shape of MMR 2e:1b and its separatrix zone.
Clearly, the Fit IIN is shifted from the separatix border by ~ 5o.
This statistically proves that the nominal system is not resonant and
is in a safely stable zone. The narrow stripes of unstable motions
can be identified with weak, higher-order 3-body MMRs with very
long diffusion time-scales, similar to the 2e:-4b:-1c MMR analyzed
above.
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Figure 9. 1D and 2D projections of the posterior probability distribution for
the planet masses and the system inclination, illustrating MCMC samples for
the Newtonian model fitted with 7 as a free parameter. Upper plot: The result
for data set D;. The MCMC chain length is 400 000 iterations (~15 times the
greatest autocorrelation time) in each of 144 different instances selected in a
small ball around Fit IIN (Table 2), completed with / = 45°. Lower plot: The
result for data set D3 composed of HARPS and UCLES measurements. The
MCMC chain length is 500 000 iterations in each of 144 different instances
selected in a small ball encompassing Fit IIN (Table 2) computed for the
osculating epoch in the middle of the data window and completed with the
initial value of 7 = 45°. Parameter uncertainties are estimated as 16th, and 84th
percentile samples around the median values (50th percentile) and marked
with dashed lines on the 1-dim histograms. Masses mj 2,3, 4 = e d,b,c
expressed in Jupiter masses, and the inclination / in degrees.
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These conclusions can be reinforced with a REM map for the three
outer planets in the semimajor axes space, represented in the orbital
period ratios ( Ps/P,, P4/P3)-plane, as the astrocentric Keplerian
description of the semimajor axes, see the bottom panel of Fig. 8.
Here, we marked 1o and 30 uncertainties the same as in the previous
panels. We computed them based on the MCMC samples. In this map,
the 2-body MMRs are marked with vertical (some of them labelled)
and horizontal curves. Skewed curves and lines are for 3-body MMRs
and could be identified with a method described in (Guzzo 2005).
Also this REM map reveals the Fit IIN safely separated from the
2e:1b MMR by several o.

3.2.2 Stability limits depending on inclination

Finally, we performed direct MCMC sampling with the inclination
added as a free parameter to the Newton co-planar model. As
expected, since the RV time series are relatively short covering ~
1.5 periods of the outermost planet, the inclination may be only
weakly constrained in the assumed interval [5°, 90°]. There should
be also strong, almost linear correlations between the masses and
mass-inclination correlation due to the msin / degeneracy.

However, this intuition seems insufficient in light of the MCMC
sampling results for data set D,, illustrated in Fig. 9 (upper plot).
It shows posterior histograms for all masses m; 5 34 and for the
inclination / as a free parameter. In addition to the predicted strong
mass-inclination correlation, we found a clear, well-defined posterior
maximum for / >~ 30°. We tested this effect in multiple MCMC
sampling experiments, varying the initial solution and sampling
conditions.

Since, due to parameter correlations, the estimated autocorrelation
time is as many as 25,000 iterations, we sampled up to 400 000 steps
for each of 144 walkers, corresponding to 15-20 autocorrelation
times. As a starting point for the sampling, we took Fit IIN in
Table 2 supplemented with / = 20°, 45°, 60°, and 75°, respectively.
Interestingly, in all cases, regardless of the initial 7, the extremum
is robust and occurs around / ~ (30° £ 10°). At the same time,
we monitored the RMS >3.4ms~! for best-fitting solutions, which
rises significantly to RMS =~ 3.6-3.8 m s~! below I > 30°. This means
that the RV data predicts all planetary masses safely below the brown
dwarf limit, i.e. the physical masses can be at most 2-3 times the
minimum masses.

To assess the statistical significance of this result, we computed the
Bayesian information criterion (BIC) defined as (e.g. Claeskens &
Hjort 2008)

BIC = pln NRV —2In ,Cmax,

for the Newtonian model, for the edge-on system with / = 90°
and for a model with variable /, with p = 26 and p = 27 of free
parameters, respectively; Nry = 411, and In Lmax is the value of In £
evaluated at the posterior extremum. For the two models, we found
In Lmax (@, I =90°) = —987.07 and In Lmax (@, I) = —987.7, re-
spectively, hence BIC(@, 1 =90°) =2130.62, and BIC@, 1) =
2137.96, respectively. Therefore

ABIC = BIC(®, I = 90°) — BIC®, I) ~ —7 < 2,

indicating that there is no evidence of the model with free incli-
nation against the edge-on model with a smaller value of BIC, see
Claeskens & Hjort (2008). However, if we apply the second-order
Akaike information criterion (AIC) for small sample sizes (Nry/p =~
15 < 40),
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Figure 10. Dynamical maps for the best-fitting coplanar N-body Fit IIN (Table 2) to data set D,, extended to the inclination / space. Subsequent panels are for
solutions selected from MCMC samples for the Newtonian model with varied inclination 7, illustrated in Fig. 9, upper plot. The colour scale is the same, as in
Fig. 6. The integration time of each initial condition is 300 Kyr (~2.7 x 10* x P4); we used the leap-frog scheme with the step size of 8 d. The asterisk symbol
means the elements of the nominal fits. The inclination of the orbital plane is described in the top-right corner of each panel. An approximate position of the

6b:1c MMR is labeled. Resolution of the plots is 720 x 360 points.

then AAIC < 2 for the two concurrent fit models, and that the
candidate model is indicated almost as good as the best edge-on
model (Claeskens & Hjort 2008). We consider this as a marginal
indication of the significance of the inclined model, which needs to
be addressed with longer RV time series.

Furthermore, we examined this effect for the D5 data set, consist-
ing of only the most accurate HARPS and UCLES RVs, and also
changed the osculating epoch of the Newtonian model to the middle
of the RV time series. In this experiment, we also increased the
number of iterations to 500 000 steps for each of the 144 walkers. As
a starting ICs, we chose Fit IIN from Table 2 with an initial value of
I = 45°, but without any prior tuning of this solution. The results are
shown in Fig. 9, lower plot. In this case, the posterior distribution is
shifted toward / = 20°. This may further indicate a systematic but
weak dependence of the Newtonian model on the inclination, which
is also sensitive to the RVs changes.

The stability zone and fine unstable structures for inclined co-
planar systems are illustrated in dynamical maps in the (a4, e4)-
plane (Fig. 10) constructed for different inclinations of the co-planar
system. We selected the best-fitting solutions from the MCMC
samples with lowest RMS ~ 3.35ms~! detected, and close to
particular, a’priori fixed inclinations. Subsequent panels are for such
best-fitting models with the inclination equal to / = 90° (the nominal

MNRAS 00, 1 (2022)

Fit IIN in Table 2), I = 60°, [ = 45°, and I = 33°, respectively. In
the later case, the planet masses are twice as large as in the nominal,
edge-on system. Moreover, the orbital elements selected from the
MCMC samples are slightly different, thus introducing variability
consistent with parameter uncertainties to the elements behind the
map coordinates.

To effectively illustrate the region of stability with respect to /
in a more global way, we scaled the minimal masses in Fit IIN
according to the minimum mass rule m;sin/ = const, recalling the
mass-inclination correlation. We then calculated the dynamical maps
in the (/, e;) plane (Fig. 11). For reference, the second upper x axis
in these maps is for the mass of HD 160691e scaled with sin /.

Although, as we have shown, the influence of the warm Neptune is
negligible for the dynamical evolution of the outer planets when their
masses are minimal, this may not be the case for small inclinations.
We therefore calculated two versions of the REM maps, for three-
(top panel) and four-planets (middle panel), respectively (the later
with lower resolution to save CPU time). It can be clearly seen that
in the range of / € [5°, 90°], which covers the variation of masses
spanning one order of magnitude, all, even very fine features of the
phase space remain the same.

Finally, we constructed a REM map in the orbital period ratios
plane shown in Fig. 11 (bottom panel) around / = 20°, similar
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Figure 11. REM dynamical maps for the N-body Fit IIN (Table 2) to data set
D, and planet masses scaled with msin/ rule. Values log |REM| < —4 are
for long-term stable solutions marked with black/dark blue colour; chaotic
solutions are marked with brighter colors, up to yellow. For the top and middle
panels, the integration time of each ICs is 200 Kyr (~1.8 x 10* x P;), and
for the bottom panel it is 300 Kyr (~2.7 x 10* x P4). The top panel is for
the 3-planet model with the mass of the warm Neptune added to the mass of
the star, and the middle panel is for all 4-planets, respectively. The upper axis
marks the mass of m; rescaled according to the msin / rule. The bottom panel
is for the REM map in the orbital period ratios (P3/P2, P4/P3)-plane, around
the nominal ICs found for 7 >~ 20°, close to the posterior maximum in Fig. 9,
bottom plot. Some MMRs are labelled. The REM indicator was computed
with the leap-frog step size of 8 d for 3-planet and 0.33 d for 4-planet scans,
respectively. Resolution is 640 x 360, 360 x 200, and 512 x 512 for the
subsequent plots, respectively.
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Figure 12. Time-evolution of the semimajor axis of HD 160691c (drawn in
magenta) for the nominal system marked in the lower panel of Fig. 11 with
the star symbol, and for a system shifted to the nearby unstable 3-body MMR
structure (drawn in green) respectively. The configurations were integrated
with SABA 4 scheme and the step size of 16 d for 6.7 Gyrs. Chaotic diffusion
for the unstable resonant model is apparent. (The ICs for this model is given
in the Supplementary Material on-line).

to the scan in Fig. 8. In this case, the masses of the planets
are (1.34,4.91, 5.85) my, i.e. the minimum masses scaled by a
factor 3. We integrated each point for 300 kyr forward and back with
the leap-frog scheme and the step size of 8 d. The ICs is located in a
denser network of 2-body and 3-body MMRs, but still well separated
from the 2e:1b MMR. We can also observe the high sensitivity of
REM to interacting MMRs, indicated by in their regions of overlap
(crossings).

Since the ICs is very close to an unstable 3-body MMR, we
performed a comparative integration of the nominal system and
a configuration slightly shifted so that it is located in this nearby
unstable MMR region (yellow strip in the lower panel of Fig. 11).
We used the SABA, scheme and the step size of 16 d, keeping
the energy integral to 10~'° on the relative scale. In both cases, the
system survived integrations for the lifetime of the star (6.7 Gyr).
Such narrow chaotic 3-body MMRs, similar to that one analysed
in Fig. 4 do not appear ‘dangerous’ for the long-term stability. The
chaotic configuration reveals only weak diffusion of a4 and e4. This
is illustrated in Fig. 12.

The general conclusion of this experiment is a relatively wide
stable zone preserved despite the enlarged minimal masses of the
planets 2-3 times. The limit of stable solutions for / = 15°-20°
roughly coincides with the shape of statistically detected posterior
extremum for / = 30° (data set D,) and I = 20° for data set D5, as we
found with the MCMC sampling. Systems with the most probable
inclinations / = 60° in purely random sample would be in the middle
of a broad, stable zone. Such the likely inclination increases the
planet masses by only 15 per cent.

Moreover, the clear posterior maxima for / >~ 30° and / ~ 20° found
here (still, in the stable zone) may confirm the marginally detected
bias toward small inclinations of multiple systems, investigated with
the HST astrometry in Benedict et al. (2022). We should also note
that for ;1 Arae very small inclinations / < 10° can apparently be
ruled out on both statistical as well as on dynamical grounds.

4 POSSIBLE DEBRIS DISCS AND SMALLER
PLANETS

Based on the updated, rigorously stable and well-constrained orbital
solutions collected in Table 2, we simulated the dynamical structure
of hypothetical debris discs in the system. In the large ‘gap’ between
the two outer planets, at ~1.52 and 5.2 au, respectively, we can
predict orbitally stable objects with masses that are below the present
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detection levels. This region may be an analogue of the Main Belt
in the Solar system, given the striking similarity of the orbits of the
Saturn- and Jupiter-mass planets to those of Mars and Jupiter. The
second debris disc, located beyond the orbit of the outermost Jovian
planet (Sancho), may be similar to the Kuiper Belt. There is also free
space between the two innermost planets that may contain Earth-
mass objects, in the wide free space extending for >~ 0.9 au between
the orbits.

We could try to recover the structure of the phase space using fast
indicators, in the form of the dynamic maps shown earlier in Figs 6
and 10 for the planets. However, such maps constructed for fixed
orbital phases of test particles permitted to vary freely may reveal
an incomplete picture. The stability of a free test body in a system
depends not only on its semimajor axis and eccentricity (ao, €p), but
also on its relative orbital phase with respect to massive planetary
perturbers.

To circumvent this limitation, we introduced a concept of the so-
called (Y)-model (or (Y)-disc) (Gozdziewski & Migaszewski 2018).
We assume that the massive planets form a system of primaries
in safely stable orbits robust to small perturbations. Then we
inject bodies with masses significantly smaller than masses of the
primaries on orbits with different semimajor axes and eccentricities
spanning the interesting region, and the orbital phases selected
randomly. Next, we integrate numerically the individual synthetic
configurations and determine their stability with the MEGNO aka
(Y) fast indicator. For this experiment MEGNO is preferable over
REM since we may expect that most of the orbits are unstable.
As soon as MEGNO reaches a value (Y) =~ 5, sufficiently different
for (Y) =~ 2 for stable solutions, we can stop the integration, thus
saving CPU-time. We explain in detail the method and calibration
experiments spanning orbital evolution of debris disks in the massive
four-planet HR 8799 system for up to 70 Myr in Gozdziewski &
Migaszewski (2018). A comparison of the results of direct numerical
integrations with the outcomes of the (Y)-model confirms that these
two approaches are consistent one with the other. Yet the (Y)-disc
method is CPU-efficient and therefore makes it possible to obtain
a clear, quasi-global representation of the structure of stable solu-
tions. This algorithm is especially effective for strongly interacting
systems.

To conduct the (Y) simulations, we chose Fit IIN located in a wide
zone of stable motions. Such a ‘safe’ neighbourhood is important for
the (¥)-model, since the system is not prone to small perturbations
exerted by the probe objects — we integrate numerically the orbits of
all bodies. Again, since we focus on the space beyond the orbit
of HD 160691e, ay ~ 0.9 au, we omitted the innermost planet
influence for the Main Belt and Kuiper Belt disks, to improve the
CPU performance. However, the effect of the innermost planet was
included in the simulation of the dynamical map for the inner zone
between the warm Neptune and the Saturn-like planet (upper left
panel in Fig. 13).

We considered three types of probe objects in different mass
regime: Vesta-like asteroids with a mass of 3 x 1077 myyp, massive
Earth-like planets with a mass of 1072 MJyps and super-Earths with
a mass of 3 x 1072 Myyp (equivalent to ~10 Earth masses, in a
sub-Neptune mass range). The RV amplitude of the later objects
would be on the level of 2-3 ms™!, relatively easily detectable with
the present RV measurements accuracy. Also, in that case we set
the system inclination / = 60° to enhance the mutual gravitational
influence between the planets and the test objects. In all experiments,
the probe object interacts gravitationally with the three most massive
planets.
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To calculate the (Y) values for the synthetic systems, we integrated
the N-body equations of motion and their variational equations with
the GBS integrator (Hairer et al. 1993; Hairer & Wanner 1996) for
~10° yr. Such an interval covers ~10* orbital periods of outermost
planet, which makes it possible to detect unstable motions associated
with strongest two-body and three-body MMRs. This integration
time is also consistent with the the typical characteristic time-scale
required to achieve (Y) convergence for a stable configuration. The
GBS integrator is the best choice in the case of collisional dynamics
that is frequently expected in this setup.

4.1 Hypothetical asteroidal belts

The results for small-mass asteroids are illustrated in Fig. 13.
Cartesian coordinates in the orbital plane of the system shown in
the top panel are accompanied by plots for canonical elements of the
test particles (bottom-right panel). We gathered ~10° stable solutions
with |(Y) — 2| < 0.007 for this case. The probe particles are marked
with different colours, depending on their dynamical status: brown
dots are for objects involved in 1:1¢ MMR with the outermost planet
HD 160691c; orange dots are for stable orbits between HD 160691b
and HD 160691c, and blue dots are for the Kuiper belt-like zone
beyond the outermost planet.

The edges of the debris disc formed in these regions are highly
asymmetric. Also, their non-random distribution in the plane of the
osculating elements (ag, eg) is shown in the bottom-right panel
in Fig. 13. It was constructed based on the canonical elements
determined in the Jacobi reference frame. The use of canonical
elements is necessary to avoid the ‘blurring’ of the distribution that
would otherwise occur with astrocentric elements. In this diagram,
we marked the asteroids with the same colors as in the snapshot in
the orbital plane, and some of the their lowest order MMRs with
planet HD 16069 1c are labelled.

The results for the (Y)-model may be confronted with dynamical
maps computed in the (ag, ep)-plane for fixed orbital phases of
the Vesta-like particles, shown in the left column in Fig. 13. The
maps show the phase structure in three distance regions: between
the innermost pair of planet HD 160691d and HD 160691e (the top
panel), in the Main Belt zone (middle panel) and in the outer, Kuiper
belt beyond the outermost planet HD 160691c (bottom panel). The
resonant structure of the debris disks is also clear, especially in
the bottom-left map. However, as expected, the Main Belt disc
structures in the 2D dynamical maps are much more narrow than
their representation in the (Y)-model, due to fixed orbital phase of
the test particles.

4.2 Earth-like planets and the habitable zone

Although we considered low-mass asteroids in this test, stable
regions can potentially host larger planets as well, in the Earth mass
range. As the mass of the probing objects increases, the regions
may decrease in size, both in the coordinate and orbital element
planes. This is illustrated in Fig. 14 for Earth-mass objects (the left
column) and super-Earths (the right column), respectively. That case
we should interpret in terms of a potential location of the small
planets rather than a representation of a physical debris disc.

The distribution of Earth objects is very similar to the experiment
for Vesta-type asteroids, as could be predicted from the similarity
of this system to the restricted problem (with zero-mass asteroids).
For more massive super-Earth ‘asteroids’ and the inclinations of the
system / = 60° the stable zones shrink considerably, but the overall
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Figure 13. Left column: dynamical maps for a test particle (Vesta-like asteroid with the mass of 3 x 10’7mJup) in three distinct regions between the planets.
The MEGNO (Y) ~ 2 indicates a regular (long-term stable) solution marked with black/dark blue colour, (¥) much larger than 2, up to 25 indicates a chaotic
solution (yellow). The integration time of each initial condition is 10° yr (~10% x P,). Top-right panel: Debris disks in the HD 160691 system revealed by
~10° stable orbits with |(¥) — 2| < 0.007 gathered in the (Y)-disk simulation. They are illustrated as a snapshot of astrocentric coordinates (x, y) at the initial
epoch #g. Colours of test particles injected with random elements, ap € [0.9, 10] au and eq € [0, 0.6]) into the system of three outer planets, correspond to their
dynamical status marked also in the panel with orbital elements, below. The initial positions of the planets are marked with filled circles. Grey rings illustrate
their orbits integrated in a separate run for 0.2 Myr. Bottom-right panel: the orbital structure of hypothetical debris discs in the system, in terms of canonical
Jacobi elements in the (ag, ep)-plane. Some two-body, lowest order MMRs with the planets are labelled, and stable orbits in their regions are marked with
different colours, consistent with a snapshot of these stable solutions in the above panel.

discs structure is still preserved. We can conclude that the (Y)-model
scales for several orders of magnitude of the probe masses.

The results are therefore universal in the sense that we can predict
the locations of e.g. Earth-like planets that are below the current
detection limits. It turns out that such small planets could be found
in the habitable zone, despite Rocinante and Quijote prevent stable
orbits of terrestrial planets unless they are placed beyond roughly
2 au (see Fig. 14), or interior to 0.3-0.4 au.

Given the luminosity of © Arae L = 1.9 L, and the spectral
temperature 7 = 5820 K (Soriano & Vauclair 2010), the outer
limiting distance roughly correspond to the orbit of Mars in the
Solar system. Indeed, for an Earth-like planet, the inner radius of
the runaway greenhouse effect is ry;, = 1.31 au, the radius of
maximum greenhouse effect 7, = 2.30 au, and the radius for early
Mars zone rgy = 2.42 au (Kopparapu et al. 2014, their habitable

zone calculator). Therefore, habitable Earth-like planets could be
found in a small region of Lagrangian (Trojan) 1:1b orbits around
HD 160691b as well on the inner edge of the Main Belt, up to the
3:1c MMR gap (see the elements distribution in Fig. 14).

5 CONCLUSIONS

The HD 160691 planetary system is one of the first detected multi-
planet configurations with a mass-diverse planets, and it comprises of
awarm Neptune, a Saturn-mass planet, and two massive Jupiter-mass
objects. The precision RV data available in public archives, spanning
at least 1.5 outermost periods, makes it already possible to tightly
constrain the orbits and minimal masses of the planetary companions
to lo ~0.02 MJyp- Unfortunately, given a low accuracy of the
HST astrometry reported in (Benedict et al. 2022), and insufficient
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Figure 14. Stable orbits in the HD 160691 system revealed by ~10° solutions with |(¥) — 2| < 0.007 gathered in the (¥)-disk simulation for a test planet masses
myg injected into the system of three outer planets with random elements, ag € [0.9, 10] au and eq € [0, 0.6]). They are illustrated as a snapshot of astrocentric
coordinates (x, y) at the initial epoch #y. Colours of the particles correspond to their dynamical status marked also in the panel with orbital elements, below. The
initial positions of the planets are marked with filled circles. Grey rings illustrate their orbits integrated in a separate run for 0.2 Myr. The left column is for my =
0.01myyp (3 Earth-masses) and the right column is for mgp = 3 x IO’ZmJLlp (10 masses of Earth). The integration time with the GBS integrator of each initial
condition is 10° yr (~10* x P4). Bottom panels are for the orbital structure of the stable orbits in terms of canonical Jacobi elements in the (ag, ep)-plane. Some
two-body, lowest order MMRs with the planets are labelled, and stable orbits in their regions are marked with different colours, consistent with a snapshot of

these stable solutions in the top panels.

detection limits (estimated here independently), we restricted the
analysis to the RV data only.

We improved kinematic (Keplerian) models reported more than
15 yr ago (Gozdziewski et al. 2007; Pepe et al. 2007), as well as
in the very recent paper by Benedict et al. (2022). Our Newtonian
RV models of the HD 160691 system imply its long-term stable,
Solar system-like orbital architecture. The planets revolve in low-
eccentricity orbits determined with significantly reduced uncertain-
ties ~ 0.01 w.r.t. the prior literature, closely resembling the Earth—
Mars—Jupiter sequence. Other orbital elements, and particularly the
semimajor axes are bounded 0.02 au for the outermost planet, and
to just 0.001-0.002 au for remaining inner massive companions.
Limiting uncertainty of the outermost semimajor axis to ~27 d
means a qualitative improvement, compared to uncertainties of
700-1300 d reported in Gozdziewski et al. (2007) and Pepe et al.
(2007).

Using the dynamical maps technique, we found that the nom-
inal ICs cover regions in the phase space within several o er-
ror bars that correspond to long-term stable evolution. The di-
rect numerical integrations indicate stable orbital evolution of the
best-fitting models for at least 6.7 Gyr (i.e. the lifetime of the
star).
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The present RV data do not make it possible to fully constrain the
system inclination. However, it does not influence the stability in a
wide range between 90° and ~ 20°. In this range, coplanar systems
remain in similarly wide and safe zones of stable motions, despite of
planet masses enlarged a few times, in accord with the msin I relation.
Moreover, we found a close overlap of the dynamical stability with
the best-fitting models in the sense that there is clear maximum of
the posterior distribution for In £ and a steep increase of the RMS at
I >~ 20°-30°. This means that all the masses would remain certainly
below the brown dwarf mass range. It also proves that the analysed
RV data bring information on the mutual interactions between the
system components.

The meaningfully constrained orbits make it possible to globally
investigate the global dynamical structure of the system. The inner
pair of Saturn—Jupiter-mass planets is close to the 2e:1b MMR, but
is significantly and systematically separated from this resonance.
Similarly, the outer pair is close to the 6b:1c MMR but also is
meaningfully far from it. This result may be important since it adds
a new observational evidence on a near-resonant, well-characterized
multiple system with Jovian-mass planets.

Multiple planetary systems, especially in the lower mass range
detected by the Kepler mission, exhibit excess of planets close to
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first order MMR (2:1 and 3:2), with the period ratio slightly higher
than the resonant value (e.g. Petrovich et al. 2013; Delisle & Laskar
2014; Ramos et al. 2017; Marzari 2018, and references therein).
There is a debate in the literature about the origin of this effect. It has
recently been shown (Marzari 2018) that the presence of a massive
circumbinary disc can significantly affect the resonant behaviour of
a pair of planets, shifting the resonant position and reducing the size
of the stability region. Dissipation of the disc may explain some
exosystems that are close to the MMR but not trapped within it. If
such mechanism was active in the © Arae system, the current, near
2e:1b MMR for the inner pair could be a signature of a massive
circumstellar disc in the past and its remnants in the form of asteroid
belts at present. In this context, the evolution of the i Arae system
serves a particularly interesting scenario. The near-resonant pair is
accompanied by a more distant high-mass companion, also near
higher order 6¢:1b MMR of the outer pair, which certainly enriches
the dynamical setup.

The orbital architecture permits for the presence of massive
debris disks, indeed, as they might survive between the planets.
There is especially wide region between the outer pair, spanning
the semimajor axes range of (1.5, 5.2) au; also there is such a
vastly wide stable region beyond the outermost planet, starting at
226.5 au and huge Trojan islands coorbital with the outermost planet.
Simulations of these debris disks reveal their strongly resonant
structure that is preserved in a wide range of probe masses, be-
tween Vesta-like asteroids and super-Earths with 10 Earth masses.
Te debris discs would be (obviously) strongly influenced by the
MMRs with the Jovian planets. Their short-term MMR structure
closely resembles the Main Belt and the Kuiper Belt in the Solar
system.

Prospects to detect relatively massive, super-Earth-mass objects
in the zone around 0.3-0.5 au or in other parts of the system, where
stable orbits of are possible, are uncertain but unlikely. The semi-
amplitude of their RV signals would be comparable with the intrinsic
stellar jitter variability. We did not detect significant periods in the
residuals of the RV models other than those identified with the known
planets.

Because p Arae has a fairly large parallax (265 mas), it may be
an interesting and promising target for ALMA and other instruments
to detect dust emissions, and set additional limits on the presence of
small planets in outer parts of the system. In addition, the detection
of debris disks, especially the outer one, can help better constrain the
inclination of the system.

Monitoring the RV variability of the star still seems plausible, as
it may permit to characterize the system even better, once the Gaia
DR4 catalogue is released. Our simulation of the IAD measurements
with the help of HTOF package (Brandt et al. 2021a) reveal that the
two outer planets will be astrometrically detectable with very high
S/N, provided the uncertainty of the IAD time series on the level of
0.1 mas. Moreover, we have shown that the mutual gravitational inter-
actions can be detected in the RV data up to the middle of 2015. Ad-
ditional precision RV observations might greatly help to break or re-
duce the msin I degeneracy, and confirm or rule out the inclination of
the system / >~ 20°-30° indicated by our Bayesian MCMC sampling
experiments.

Finally, the highly hierarchical configuration of p Arae is a
new test-bed for our new fast indicator REM (Panichi et al. 2017)
that helps to analyse the structure of the phase space in terms of
the most accurate, Newtonian representation of the data. Despite
analytical approximations for the motion of the innermost planet
may be constructed (Farago et al. 2009), the simple REM algorithm
based on the canonical leap-frog scheme offers a sufficient numerical
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efficiency to derive the dynamical maps through integrating the exact
equations of motion of the whole system. It is also fully compatible
with more CPU demanding MEGNO technique, especially for
systems in regions of the the phase space which are filled with mostly
stable solutions.
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6 DATA AVAILABILITY

The Radial Velocity time series referenced in this paper as data set
D, are available in their source form, as published by Benedict et al.
(2022) and as data sets D, and D3 from (Trifonov et al. 2020, https:
//doi.org/10.1051/0004-6361/201936686), also https://github.com/3
fon3fonov/HARPS_RVBank. All other data presented in Tables 1,
2, and Figures, underlying this article will be shared on reasonable
request to the corresponding author.
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Figure S2. A fragment of the corner plot for posterior samples for
the Keplerian model with an instrumental drift attributed to UCLES
measurements.
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