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A B S T R A C T 

We re-analyse the global orbital architecture and dynamical stability of the HD 160691 planetary system. We have updated the 
best-fitting elements and minimal masses of the planets based on literature precision radial velocity (RV) measurements, now 

spanning 15 yr. This is twice the RVs interval used for the first characterization of the system in 2006. It consists of a Saturn- 
and two Jupiter-mass planets in low-eccentric orbits resembling the Earth–Mars–Jupiter configuration in the Solar system, as 
well as the close-in warm Neptune with a mass of � 14 Earth masses. Here, we constrain this early solution with the outermost 
period to be accurate to one month. The best-fitting Newtonian model is characterized by moderate eccentricities of the most 
massive planets below 0.1 with small uncertainties � 0.02. It is close but meaningfully separated from the 2e:1b mean motion 

resonance of the Saturn–Jupiter-like pair, but may be close to weak three-body MMRs. The system appears rigorously stable 
o v er a wide region of parameter space co v ering uncertainties of sev eral σ . The system stability is robust to a five-fold increase 
in the minimal masses, consistent with a wide range of inclinations, from � 20 

◦ to 90 

◦. This means that all planetary masses are 
safely below the brown dwarf mass limit. We found a weak statistical indication of the likely system inclination I � 20 

◦–30 

◦. 
Given the well-constrained orbital solution, we also investigate the structure of hypothetical debris discs, which are analogues 
of the Main Belt and Kuiper Belt, and may naturally occur in this system. 

Key words: methods: data analysis – methods: numerical – techniques: radial velocities – celestial mechanics – planets and 

satellites: dynamical evolution and stability – stars: individual: HD 160691. 
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 I N T RO D U C T I O N  

D 160691 ( μ Arae, GJ 691) is a bright ( V = 5.15 mag) Sun-
ik e, main-sequence G3IV-V dw arf monitored in a few long-term, 
recision radial velocity (RV) surveys. The Anglo-Australian Tele- 
cope team (AAT, UCLES spectrometer) disco v ered its Jupiter-mass 
ompanion HD 160691b in about of 630-d orbit (Butler et al. 2001 ),
nd Jones et al. ( 2002 ) found a linear trend in the RV data indicating a
econd, more distant planet. The star was also observed in the Gene v a
lanet Search program with CORALIE spectrometer. McCarthy 
t al. ( 2004 ) determined the orbital period of the outermost planet
D 160691c � 3000 d and large eccentricity e c ∼ 0.57, ho we ver

endering the system unstable. The same year, Santos et al. ( 2004 )
etected � 14 Earth-mass planet HD 160691d in � 9.6 d orbit with
ARPS spectrometer, achieving precision � 1 m s −1 , actually below 

he RV variability (aka stellar jitter) induced by the Sun-like stars
hemselves. Furthermore, Butler et al. ( 2006 ) published 108 new 

bservations of HD 160691, spanning about of 7.5 yr, made after 
AT UCLES update, also approaching the measurement uncertainty 
elow 1 m s −1 at the end of the observational window . Shortly ,
epe et al. ( 2007 ) published RVs from their HARPS followup,
nd announced the disco v ery of the fourth, Saturn-mass planet in
he system. In parallel, Go ́zdzie wski, Macieje wski & Migaszewski 
 2007 ) independently used genetic algorithms to re-analyse data in 
he Butler et al. ( 2006 ) catalogue, and they found a very similar
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olution with small eccentricity orbits, also including the fourth 
lanet with the orbital period � 307 d. That planet ‘hided’ in the
V signal, because this period is approximately two times shorter 
s that of the firstly detected planet HD 160691b. Such a planet
as unexpected in the paradigm of characterizing planets in order 

orrelated with their RV v ariability. Go ́zdzie wski et al. ( 2007 )
oncluded that the four-planet system may be long-term stable in 
 wide range of the outermost period. Ho we ver, it could not be
onstrained very well at that time, in � 3000–5000 d range. 

Since then, the star has continued to be RV-monitored. The HARPS 

easurements are now publicly available in the RV catalogue 
rom archi v al spectra carefully reduced by Trifonov et al. ( 2020 ).
lso, very recently Benedict et al. ( 2022 ) published additional
80 measurements from the UCLES spectrometer. The data alto- 
ether span 17.3 yr ( � 6318 d), between epochs JD 2450915.29 and
D 2457273.2878. Benedict et al. ( 2022 ) aimed to derive the new
olution for the system based on combined RVs with Hubble Space
elescope ( HST ) astrometry. They investigated possible astrometric 
ignals of the planets. They conclude that the residuals � 1–2 mas to
he canonical 5-parameter astrometric model contain marginal or no 
vidence for any of the planets in the HD 160691 system, making it
ossible only to constrain lower masses of the planets to 4– 7 m Jup 
i.e. 2–3 times larger than the minimal masses estimated with the
Vs). 
Furthermore, Benedict et al. ( 2022 ) report their updated Keplerian

V solution including the Saturn-mass planet as catastrophically 
nstable. They conclude that a notorious instability problem of the 
ystem remains unsolved, invoking Pepe et al. ( 2007 ), Laskar &

http://orcid.org/0000-0002-8705-1577
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1 https://www.nameexowor lds.iau.or g/
etit ( 2017 ), Agnew, Maddison & Horner ( 2018 ), and Timpe et al.
 2013 ). This renewed our interest in the dynamics of HD 160691
ystem, given simultaneously our earlier, e xtensiv e inv estigations
Go ́zdziewski, Konacki & Maciejewski 2003 , 2005 ), and the results
n Go ́zdziewski et al. ( 2007 ). We came to quite the opposite conclu-
ion that the four-planet architecture, and moderate eccentricity of all
lanets is crucial to maintain the long-term stability of the system.
ctually, we found in Go ́zdziewski et al. ( 2007 ) that the 3-planet
odel involving only two outer Jovian planets is localized at the

ery border of dynamical stability, with planets in high-eccentricity
rbits, and such a feature indicated that the adopted model was
ncomplete or incorrect. 

Extending the RV time series puts the long-term monitored
lanetary systems deeper in the stability zone. A recent discussion
f this heuristic effect can be found in Stalport et al. ( 2022 ). What
s more, not only the RV data co v ers twice the time range in earlier
ork. The most accurate HARPS data recently been independently

eprocessed using a new RV pipeline by Trifonov et al. ( 2020 ). They
isco v ered and remo v ed various systematic errors in a large sample
f spectra. In some cases, they claim, the new RVs with improved
ccuracy can lead to orbital solutions different or more accurate from
hose found so far, including the hope of detecting additional planets.
ll of this gives us ample opportunity to test earlier predictions. Our
oal is also to update the system’s position in stability diagrams and
tatistics of multiple systems, studied for example by Timpe et al.
 2013 ) and Laskar & Petit ( 2017 ). 

In addition to explaining this qualitative discrepancy between the
esults in Benedict et al. ( 2022 ) and in Go ́zdziewski et al. ( 2007 ) the
oti v ation for this work is to answer several open questions which

ave not been previously addressed in the literature. 
Since the current RV data co v ers almost twice the observational

indow since 2006, we want to constrain the orbit of Jupiter’s
utermost planet. It was determined with a large uncertainty of 700 d
eported in Pepe et al. ( 2007 ) and an even larger uncertainty of
1300 d in Go ́zdziewski et al. ( 2007 ). 
Also, it is known that a sufficiently long interval of RVs data makes

t possible to detect gravitational interactions between the planets
e.g. Laughlin & Chambers 2001 ). Until now, the RVs of μ Arae have
een modelled in terms of a Keplerian parametrization of the orbital
lements, since the interactions of its planets were not measurable
t the time. In this kinematic approach, the inclination of the
ystem remains completely unbounded. Ho we ver, the most accurate
ewtonian model can break the mass-inclination de generac y, or

t least constrain the masses of the planets indirectly through the
tability requirement. 

Our goal is also to resolve the open question of whether the
nner Saturn–Jupiter planet pair is involved in the 2e:1b MMR, or
hether it is only close to this resonance. As far as this is concerned,

he conclusions in both Pepe et al. ( 2007 ) and Go ́zdziewski et al.
 2007 ) were uncertain, as both types (resonance or near-resonance)
f solutions were possible. Ho we ver, this is crucial for explaining
he apparent excess of planet pairs near low-order resonances (e.g.
etrovich, Malhotra & Tremaine 2013 ; Marzari 2018 , and references

herein). The detailed characterization of multiple planetary systems,
ncluding their orbital resonances, is one of the fundamental problems
rom the point of view of the theory of planet formation and for
xplaining their observed orbital architectures. 

If our early predictions in Go ́zdziewski et al. ( 2007 ) hold, and
e find a dynamically stable orbital architecture for the planets, it
ay be possible to study the structure of debris discs in the system,

articularly in the broad zone between 1.5 and 5.2 au, and beyond
he outermost planet. According to the packed planetary systems
NRAS 00, 1 (2022) 
PPS) hypothesis (Barnes & Greenberg 2007 , and references therein),
maller planets may exist in the system, but below the current RV
etection level, approximately 1 m s −1 , which correspond to the
arth’s mass range. 
Finally, the highly hierarchical configuration of the HD 160691

lanets imposes numerical problems in studying the long-term
tability of the system, either through direct numerical integrations
r by using the fast indicator approach, which is preferred in this
ork. Recall that the system contains a warm Neptune in an orbit
f 9.6 d, as well as a very distant companion in an orbit of 4000d,
orcing a huge reduction in the discretization step size. To solve
his problem, we propose a new numerical algorithm called REM
Panichi, Go ́zdziewski & Turchetti 2017 ), which we pro v ed to be a
lose analogue of the Maximum Lyapunov Exponent (MLE). In this
ork, we compare the results of this fast indicator with the well-

ested and widespread MEGNO (Go ́zdziewski et al. 2001 ; Cincotta,
iordano & Sim ́o 2003 ). We show that despite simplicity of the

lgorithm, the REM indicator yields 1:1 dynamic maps compared
o MEGNO and still outperforms the later variational algorithm in
erms of CPU o v erhead. 

We attempt to answer the questions posed abo v e from the perspec-
ive of both updated RV time series and constraints provided with
strometric observations, as well as new statistical formulations of
he RV model, dynamic and computational tools that have emerged
 v er the time since the studies of Go ́zdziewski et al. ( 2007 ) and Pepe
t al. ( 2007 ); we note that Benedict et al. ( 2022 ) also modelled the
V using the former, now somewhat ‘outdated’ approach. 
Planets disco v ered in the μ Arae system are named in different

ays. Here, we adopt three designations: the first one is based on
he star name, as the central object and subsequent Roman letters
‘b’, ‘c’, ‘d’, and so on) attributed to the planetary companions in
he chronological order of their disco v ery (Go ́zdziewski et al. 2007 ).
he second method is to enlist the planets according to their distance

rom the star, with digits ‘1’, ‘2’, ‘3’, and so on. Finally, we use the
ames attributed to the planets by the International Astronomical
nion (2015) in the NameExoWorld campaign 1 , among firstly
isco v ered 19 e xtrasolar planetary systems. The y were inspired
y characters from the famous Don Quixote book by Miguel de
ervantes. So the μ Arae system is composed of the host star Cer-
antes (HD 160691), and planetary companions HD 160691d (Dul-
inea, planet ‘1’), HD 160691e (Rocinante, planet ‘2’), HD 160691b
Quijote, planet ‘3’), and HD 160691c (Sancho, planet ‘4’),
espectively. 

The paper is structured as follows. After this Section 1 , we
escribe data sources used for this study in Section 2 . We discuss
lanet detection limits, based on the astrometric HST data and their
nalysis reported in Benedict et al. ( 2022 ), as well as our independent
imulations of the astrometric signal. In Section 2.3 , we briefly
ecall essential details on the RV modeling in terms of Keplerian
nd Newtonian parametrization of the initial conditions (ICs) for
ultiplanet configurations, and we point out factors omitted in the

rior literature. We report on a comparison of the results based on
hese two RVs parametrizations. Section 3 is devoted to the long-term
tability of the system. We aim to bound the inclination of the system
ith the RVs alone, based on the Newtonian model and statistical and
ynamical constrains. Section 4 is devoted to numerical simulations
hat reveal the dynamical structure of hypothetical debris discs in the
ystem as well as indicate possible localization of additional smaller
lanets. The work is summarized in Section 5 . 

https://www.nameexoworlds.iau.org/


The μ Arae planetary system 3 

Figure 1. Astrometric detection limits in the mass–semimajor axis space for planets in circular, edge-on orbits simulated with the HTOF package (Brandt et al. 
2021a ), based on perturbed motion of the star due to the presence of planets. Objects in the blue-shaded region would be detected within the �χ2 > 30 criterion 
when combining Gaia DR4 and Hipparcos IAD. (This criterion assumes �χ2 = 0 for a free, inertial motion of the star). The left-hand panel is for edge-on 
orbits of the Saturn- and Jupiter-mass planets around μ Arae with the orbital elements listed in Table 2 , Fit IIN. Jupiter and Saturn are marked for a reference. 
We assume extremely high-precision IAD in the anticipated Gaia DR4 catalogue, with the mean uncertainty of 50 μas. The right-hand panel is for the planet 
masses enlarged by the factor 1/sin (30 ◦), and artificial IAD accuracy of Gaia DR4 � 0.7 mas, compatible with the declared HST FGS measurement precision 
reported in Benedict et al. ( 2022 ). There are planned 96 Gaia observations by the year of 2022, based on the Gaia Observation Forecast Tool (GOST). 
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.1 Astrometric obser v ations 

enedict et al. ( 2022 ) observed HD 160691 with the HST Fine
uidance Sensor (FGS) between dates 2007.5 to 2010.4 (for about 
f 2 orbital periods of HD 160691b). They made a detailed reduction
f the observations and reported the results. Overall, the accuracy 
f the astrometric measurements � 0.6–0.7 mas, and the residuals to 
-elements canonical astrometric solution (no companions present) 
re estimated on the level of � 1–2 mas. Ho we ver, the periodogram
nalysis of these residuals, which might contain unmodelled factors 
nd a signature of companions, does not show any significant period 
 v erlapping with the known orbital variability from the RV analysis.
nfortunately, also analysis of the proper mean motion based on 

he HST measurements by Benedict et al. ( 2022 ), and Hipparcos
van Leeuwen 2007) by Brandt ( 2021 ), respectively, relative to the
stimates in the Gaia DR3 catalogue indicate that there is a marginal
r lack of a measurable difference between the proper mean motion at
he initial and the final epochs for 25 yr. That means there is difficult to
etect a significant acceleration caused by the planetary companions, 
hich was used, for instance, to astrometrically constrain the mass 
f the innermost planet HR 8799e in Brandt et al. ( 2021b ). 
Given the negative detection of any of the companions, Benedict 

t al. ( 2022 ) estimated the lower mass limits for HD 160691b,e,c as
4 . 3 , 7 . 0 , 4 . 4) m Jup , respectively, which could be consistent with
 low inclination of the system below I = 30 ◦. Moreo v er, the y
laim that inclinations in their sample of multiple-planetary systems 
re biased towards small values, I � 30 ◦ and less. As we show
elow, for HD 160691 this can be verified based of the RVs data
lone. 

Although the parallax of the system is large, � � 64 mas,
he relatively small semimajor axes of the planets, compared to 
ther astrometrically detected systems, translate to weak astrometric 
ignals. To illustrate this effect, and to predict if the system may
e characterized astrometrically by the ongoing Gaia mission, we 
imulated detection limits with the Intermediate Astrometric Data 
IAD) from the Hipparcos and Gaia surv e ys. F or this purpose,
e used the HTOF package by Brandt et al. ( 2021a ) which makes

t possible to combine data from both missions, including IAD for
 i
aia simulated with the help of Gaia Observation Forecast Tool 
Gaia Collaboration 2021 , GOST). 

The results are illustrated in Fig. 1 . The left-hand panel is for
he detection limits for outer, massive planets assuming that the 
nclination I = 90 ◦ and masses are minimal (a less fa v ourable
cenario). Then, assuming a superior mean accuracy of � 96 Gaia
easurements scheduled by the end of 2022, with the mean uncer-

ainty σ � 50 mas in the anticipated DR4 catalogue, and IADs from
ipparcos , we would easily detect the outermost pair of Jupiters.
ote that the border of detection zone marks the astrometric detection 

riterion of �χ2 > 30 by Perryman (Brandt et al. 2021a ), when
χ2 = 0 applies to the free motion of the star. Ho we ver, the inner
aturn-mass planet remains deep below the detection limit (blue- 
haded region). 

The situation is dramatically worse, if a hypothetical data accuracy 
 0.7 mas is close to the HST FGS astrometry. Even if the system

nclination is statistically most likely for I = 60 ◦ or smaller, consistent
ith the inclination bias reported in Benedict et al. ( 2022 ), I =
0 ◦, scaling the minimal masses by a factor of � 20 per cent and �
00 per cent , respectively, only the outermost planet could be barely 
etected with the astrometric time-series. 

Unfortunately, these arguments and simulations leave little hope 
hat a re-analysis of the available astrometric data may change the
esults and conclusions in Benedict et al. ( 2022 ) and Brandt ( 2021 ).
herefore we abandoned the HST astrometry from further analysis, 
nd we focused on the RV observations only. 

.2 Radial Velocity data 

e considered three slightly different sets of the RV measurements 
or μ Arae available in public archives and sources. 

The RV data set D 1 consists of 380 measurements spanning 
317.5 d. They are collected with three instruments: CORALIE 

 D CORALIE ), UCLES ( D UCLES ), and HARPS ( D HARPS1 , 2 ). This set
s literally the same as in Benedict et al. ( 2022 ), and we obtained it
rom the author (pri v ate communication). In densely sampled parts
f the observational window, the data were binned if there was more
han one measurement made during a night. The mean uncertainty 
s different for individual spectrometers, and varies between 〈 σ 〉 ∼
MNRAS 00, 1 (2022) 

art/stac2584_f1.eps
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 m s −1 up to a several m s −1 for CORALIE. Moreo v er, Benedict
t al. ( 2022 ) considered HARPS observations in two disjoint sets:
rom Pepe et al. ( 2007 ) and the second part of the time-series after
hat date from Trifonov et al. ( 2020 ). They attributed different RV
ffsets to these sets. 
We also compiled a second data set D 2 . Trifonov et al. ( 2020 )

erived the RV velocities from spectra obtained prior – and post –
he HARPS upgrade in May 2015, and corrected them for various
ystematics and instrumental effects. Since the available data for
D 160691 contains ef fecti vely only two post-upgrade measure-
ents made in nights of 2015 June and July, we skipped these points

rom the orbital analysis. It would be difficult to account for two free
arameters, σ f and V 0 ≡ V 0, UCLES , to be statistically determined with
he RV subset comprising of only two datum. Moreo v er, because the
ost-upgrade HARPS epochs o v erlap with UCLES measurements,
kipping them unlikely may change the model results. We also get rid
f two free parameters. Similarly to Benedict et al. ( 2022 ), we also
inned densely sampled measurements, but with a smaller interval
f 0.1 d. Before doing that, we remo v ed sev eral points from the
ARPS RV time series in Trifonov et al. ( 2020 ), with heavily
utlying uncertainties of 10–24 m s −1 , given the mean uncertainty
HARPS � 1 m s −1 . The problematic measurements appear around

D 2453169 (2004 mid-June), when literally hundreds of spectra
ere taken o v ernight. Remo ving these points should not cause any
roblem, due to the dense sampling and binning. For the binned data
n set D 2 , we adopted the uncertainties as the mean uncertainty in a
iven bin. 
In this way, the data set D 2 consists of the whole pre-upgrade

ARPS measurements D HARPS , as a homogeneous data set from
rifonov et al. ( 2020 ), and D CORALIE and D UCLES from Benedict et al.
 2022 ). This set has 411 measurements and also spans 6317.5 d. To
implify presentation of the RV offsets, we subtracted the mean value
f all RVs in a given subset from individual RVs in this subset. 
Finally, in some experiments we considered data set D 3 composed

f 349 measurements from the pre-upgrade HARPS and D UCLES 

rom Benedict et al. ( 2022 ). These RV time-series span the same
ime interval as D 2 does. This data set D 3 lacks the less accurate
 CORALIE RVs. 

.3 Keplerian versus Newtonian Radial Velocities 

he mathematical models for the RV velocities are well known.
o we ver, to keep the presentation self-consistent, and to co v er some
uances, we will briefly recall the required material. 
Since, following the prior literature, we expect that the μ Arae

rbits may be quasi-circular, to get rid of weakly constrained
ongitudes of pericentre � i when eccentricities e i ∼ 0, we introduce
oincar ́e elements { x i = e i cos � i , y i = e i sin � i } , i = 1, 2, 3, 4.
lso, the mean anomaly M at the selected initial epoch t 0 denoted

s M i ≡ M i ( t 0 ) is defined through the III law of Kepler, but written
or the Jacobian reference frame 

 i = 2 π

√ 

a 3 i 

k 2 ( m 0 + m 1 + . . . m i ) 
, M i ( t) = M i + 

2 π

P i 

( t − t 0 ) ,

(1

here k is the Gauss constant, and P i , a i stand for the orbital period
nd semimajor-axis for each planet, respectively. 
NRAS 00, 1 (2022) 
Regarding the Keplerian parametrization of the RV, we apply the
ell-known canonical formulae (Smart 1949 ) due to the presence of
lanets 

 ( t) ≡ V 

K 
r ( t) = 

N pl ∑ 

i 

K i [ e i cos ω i + cos ( νi + ω i ) ] , (2) 

= 

N pl ∑ 

i 

K i 

[ 
x i + 

(
x 2 i + y 2 i 

)−1 / 2 
( x i cos νi − y i sin νi ) 

] 
, (3) 

here ω ≡ � for a coplanar system, ν ≡ ν( t ) denotes the
rue anomaly of a planet, N pl is the number of planets in the
ystem, and ν = ν( P , e, M ( t)). To characterize the orbit of the
 th planet, we need to know five free orbital elements: θθθ i =
 K i , P i , x i ≡ e i cos � i , y i ≡ e i sin � i , M i ] , where the RV semi-
mplitude K i depends on the minimal mass of the planet m i sin I ,
hen the inclination I = 90 ◦. 
Let us note that we interpret the RV signal in terms of the

eometric elements inferred in the Jacobian frame of reference. We
ollow here conclusions and discussion in Lee & Peale ( 2003 ), to
roperly express parameters of the Keplerian model through the
 -body initial condition. We need that to investigate the long-

erm stability of the system with the numerical inte grations. F or
elati vely massi ve planets, the Jacobian (canonical) elements account
or indirect interactions between the planets on Keplerian orbits to
he first order in the masses (the ratio of planet masses to the star

ass), see also Go ́zdziewski et al. ( 2012 ) for more details. 
In order to derive the N -body initial condition from the fitted

eplerian elements θθθ i , i = 1, . . . , N pl , we first determine the minimal
asses m i sin I ≡ m i and semimajor axes a i of the planets. The semi-

mplitude K i of the RV signal determines the relation 

 i 

√ 

1 − e 2 i = a i 

(
2 π

P i 

)
m i 

( m 0 + m 1 + . . . + m i ) 
, 

here the a i constrained by the observ ationally deri ved orbital period
 i obeys equation ( 1 ), and m 0 stands for the star mass. Eliminating a i ,
e obtain a cubic equation for the unknown masses, which may be

ubsequently solved for m i , i = 1, 2, . . . , based on analytical formulae
r with a simple Newton–Raphson scheme (a few iterations suffice
o reach the machine accuracy). Then we transform the geometric
lements to Cartesian coordinates and velocities with the standard
wo-body formulae, where the gravitational parameter for the i th
lanet is μi = k 2 ( m 0 + m 1 + . . . m i ). 
To determine parameters of the orbital model explaining the

V time-series, we optimized a canonical form of the maximum-
ikelihood function L (Baluev 2009 ): 

ln L = −1 

2 

∑ 

i,t 

(O-C) 2 i,t 
σ 2 

i,t 

− 1 

2 

∑ 

i,t 

ln σ 2 
i,t −

1 

2 
N RV ln 2 π, (4) 

here (O − C) i , t is the (O–C) deviation of the observed t -th RV
bservation, with the uncertainty σ 2 

i,t → σ 2 
i,t + σ 2 

f , with σ f parameter
caling the raw error σ i , t in quadrature, and N RV is the total number of
he R V observations. W e assume that the uncertainties are Gaussian.

The error floor factors σ 2 
f are different for each telescope, as

he y may involv e not only the intrinsic, chromospheric RV stellar
ariability (stellar jitter), but also instrumental uncertainties inherent
o each telescope and the RV pipeline. The RV model also involves
ndi vidual of fsets of the zero-level RV for each instrument. Distin-
uishing between these two parameters is important even for the
ame spectrometer and different setups of its work. For instance, the
pgrade of HARPS optical fibres around the middle of 2015 changed
he instrumental profile and thus the RV offset between the pre- and
ost-upgrade R Vs. T o complicate things even more, the R V offset
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ay be not the same for all stars and may even depend on the stellar
pectral type (Trifonov et al. 2020 ). 

Therefore fitting the jitter uncertainties as free parameters of the 
odel is crucial to obtain adequate statistical representation of the 
 V data. W e may note here, that in the past, these parameters have
een fixed based on the averaged values for chromospherically quiet 
tars of a given spectral type. That recently outdated (and somewhat 
ncorrect) approach was used by Go ́zdziewski et al. ( 2007 ) and Pepe
t al. ( 2007 ); Benedict et al. ( 2022 ) tuned the RV uncertainties to
btain χ2 

ν � 1. 
Usually, the Keplerian model determines sufficiently accurately 

he N -body, exact RVs. Ho we ver, for systems with large-mass plan-
ts, this equi v alence may be questionable, especially if the interval of
he RV time series becomes long. Then we have to introduce the self-
onsistent model that requires solving the Newtonian equations of 
otion. The RV due to the planets is the velocity component of the

tar along the z-axis w.r.t. the barycentre of the Solar system 

 ( t) ≡ V 

N 

r ( t) = − 1 

m 0 

N pl ∑ 

i= 1 

m i ̇z i ( t) , (5) 

hich is parametrized through planet masses and the osculating 
rbital elements θθθ i = [ m i , a i , x i , y i , M i ] for each planet in the 
ystem. Here, as the osculating epoch we select the epoch of the
rst observation in the time series. In some experiments, we also 
elected the osculating epoch in the middle of the data window. 

Expressions for the RVs, equations ( 2 ) and ( 5 ) have to be
ccompanied with the instrumental zero-level offsets V 0, j , j = 1, 
 . . , M that makes it possible to compute (O − C)( t ) in equation
 4 ). For N pl -planets forming a coplanar system observed with M
nstruments, we have therefore p = 5 N + 2 M free parameters to be
tted to 1D time series of the RV observations. 
The definition in equation ( 4 ) is constructed so the best-fitting
odels should yield χ2 

ν = χ2 / ( N RV − p) ∼ 1, and χ2 
ν cannot be used

o compare the models quality. Instead, Baluev ( 2009 ) proposed to
se: 

ln L = − ln L /N RV − ln (2 eπ ) / 2 , 

here L is expressed in ms −1 . This statistics is suitable to assess
he relative quality of fits, since L ∼ 〈 σ 〉 measures a scatter of

easurements around the best-fitting models, similar to the common 
MS – smaller L means better fit. 
In order to localize the best-fitting solutions in the multidimen- 

ional parameter space, we explore it with evolutionary algorithms 
GEA from hereafter, Charbonneau 1995 ; Ruci ́nski, Izzo & Biscani
010 ). We then perform the MCMC analysis in the neighbourhood 
f selected solutions using an af fine inv ariant ensemble sampler 
Goodman & Weare 2010 ) encompassed in a great emcee package 
F oreman-Macke y et al. 2013 ). The computations were performed 
n multi-CPU environment, making it possible to e v aluate 128 000–
56 000 (or more) of 144–384 emcee ‘w alk ers’ from a small-radius
all around a solution found with the GEA. 
We select all priors as flat (or uniform, improper) by sufficiently 

road ranges on the model parameters, e.g. P i ∈ [1, 10 000] d, x i , y i 
 [ −0.25, 0.25], m i ∈ [0.1, 14] m Jup , ( i = 1, 2, 3, 4), the error floors

jitters) σ f , j > 0 m s −1 , j = 1, . . . , M . In a few experiments with
he N -body model, we also tested Gaussian priors for the ( x 1 , y 1 )
lements of the innermost planet, with the mean equal to zero and
ariances σ x , y = 0.05, 0.075, 0.1, respectively. In this case, however, 
he results of sampling did not substantially change, compared to the 
at priors. 
.4 The best-fitting orbital configurations 

e first performed an e xtensiv e search for the best-fitting solutions
sing GEA, and we collected � 10 3 solutions for the data sets
nd model variants. We found that the best-fitting Keplerian and 
ewtonian models with L � 3.2 m s −1 (RMS � 3.4 m s −1 ) have well-
etermined extrema of ln L for orbital periods P i of roughly 9.64,
08, 645, and 4030 d, respectively. Also, all osculating eccentricities 
re limited to moderate values, roughly in the range of 0.02–0.1. 

The resultig best-fitting parameters for data sets D 1 and D 2 are
iven in Tables 1 and 2 . The best-fitting Keplerian model Fit IIK in
able 2 is illustrated in Fig. 2 , left-hand panel. Using this solution
s an example, we checked the consistency of the Keplerian and
ewtonian parametrization. We transformed Fit IIK as osculating 

lements for the epoch of the first observation t 0 = JD 2450915.29
n the UCLES data, as described in Section 2.3 . We then computed
he Newtonian RV signal through of numerical integration of the 
 -body equations of motion for the entire four-planet system with

he IAS15 integrator (Rein & Spiegel 2015 ). It turns out that the
ifference � RV ( t) = V 

N 

r ( t) − V 

K 

r ( t) increases in an oscillatory
anner, reaching about ±10 m s −1 , which exceeds more than twice

he RV signal from the innermost planet (red curve in the residuals
iagram in Fig. 2 ). 
To verify this effect globally in the parameter space, we performed

he MCMC sampling with both the Keplerian and Newtonian RV 

odels. The final results for data set D 2 are illustrated in Fig. 3 . (We
kip presentation of the results for D 1 , since they are very similar).
his figure shows 1D and 2D projections of the posterior probability
istribution for selected Keplerian (top row) and Newtonian (bottom 

ow) orbital elements obtained for the innermost (left column) and 
utermost (right column) planet, respectively. The posterior has well 
efined extrema along all dimensions. We did not notice significant 
orrelations between the displayed parameters, except for x , y , and

 . 
The quality of the best-fitting configurations, in terms of RMS 

 3.4 m s −1 , is also almost the same. Surprisingly, the posterior
istributions are not only very similar to each other, especially if we
ompare the 2D shape distributions for x , y , and M , but also the
ccentricities and orbital angles closely o v erlap, e.g. the best-fitting

 4 anomaly differs by only 2 o in these models. 
How to interpret this apparent paradox, given the relatively large 
asses of Jupiter-like companions and their significant, mutual 

nteractions o v er the observing interval, illustrated in Fig. 2 ? A direct
omparison of the RV signals may be biased because the accuracy of
he formal two-body Keplerian element transformation to Cartesian 
oordinates is limited to the first order in masses (e.g. Go ́zdziewski
t al. 2012 ). Ho we ver, the representation of the Keplerian initial
ondition for the N -body problem may better fit the data if it
s tuned within the parameter uncertainties. Therefore, given well 
ounded orbital elements, the MCMC sampling reveals globally 
imilar posteriors for both models. 

We also see the posteriors for the near 2e:1b MMR pair of the
aturn–Jupiter-mass planets exhibiting some significant differences 
see on-line Supplementary Material, Fig. S1). This can be explained 
y their relatively shorter periods, co v ering � 20 and � 10 times the
bserv ational windo w, respecti vely, and the 2e:1b MMR proximity,
hich strengthens the mutual gravitational interactions. 
The MCMC experiment implies that, keeping in mind the lim- 

tation for representing individual ICs, we can still use Keplerian 
CMC sampling to efficiently explore the parameter space, in 

erms of the posterior distribution, especially for highly hierarchical 
onfigurations with large period ratio. Note that P 4 / P 1 � 400 for
MNRAS 00, 1 (2022) 
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Table 1. Best-fitting parameters of the μ Arae (Cervantes) system for the Keplerian (Fit IK) and Newtonian (Fits IN) parametrization, 
data set D 1 . The osculating epoch is the date of the first observation in the UCLES data set. The system is coplanar with the inclination 
I = 90 ◦ and nodal longitudes � = 0 ◦. The stellar mass is 1 . 13 m 
 (Bonfanti et al. 2015) as used by Benedict et al. (2022 ), and 
close to 1 . 10 ± 0 . 02 m 
 in Soriano & Vauclair ( 2010 ). The RV offsets are computed w.r.t. the mean RV in each individual data 
set. Uncertainties are estimated around the median values μ, i.e. [ μ − σ , μ + σ ] as the 16th and 86th percentile of the samples. 
Numerical values for Fit IN selected from the MCMC samples with low RMS are quoted to the 7th digit after the dot, to make it 
possible to reproduce the dynamical maps and direct numerical integrations. The mean longitude λ = � + M at the epoch was 
computed from the MCMC samples. 

Planet HD 160691d (Dulcinea, 1) HD 160691e (Rocinante, 2) HD 160691b (Quijote, 3) HD 160691c (Sancho, 4) 

Fit IK (Keplerian model of the RV, data set D 1 , RMS = 3.4 m s −1 ) 
K (m s −1 ) 2.95 ± 0.19 13.22 ± 0.34 36.47 ± 0.22 23.17 ± 0.33 
P (d) 9.638 ± 0.001 308.75 ± 0.29 645.00 ± 0.36 4060 ± 27 
e cos � −0.104 ± 0.063 −0.093 ± 0.014 0.058 ± 0.011 0.022 ± 0.012 
e sin � −0.059 ± 0.063 −0.014 ± 0.017 0.023 ± 0.008 0.032 ± 0.013 
e 0.137 ± 0.056 0.096 ± 0.014 0.063 ± 0.010 0.040 ± 0.013 
� (deg) 210 ± 32 189 ± 10 21.6 ±(9.4,8.2) 55.9 ± 17.5 
M (deg) 223.3 ± 32 66.7 ± 10.5 272.5 ±(8.3,9.4) 185.9 ± 17.2 
λ (deg) 73.3 ± 10.5 255.4 ± 3.9 294.0 ± 1.0 241.9 ± 2.2 
V 0 (m s −1 ) CORALIE: 13.04 ± 0.42, UCLES: −7.80 ± 1.20, HARPS 1 : 1.0 ± 0.3, HARPS 2 : −4.20 ± 0.32 
σ f (m s −1 ) CORALIE: 1.30 ± 0.21, UCLES: 6.1 ± 1.1, HARPS 1 : 0.62 ± 0.46, HARPS 2 : 1.67 ± 0.40 

Fit IN (Newtonian model of the RV, data set D 1 , RMS = 3.4 m s −1 ) 

m sin I ( m Jup ) 0.033 ± 0.002 0.477 ± 0.012 1.680 ± 0.010 1.978 ± 0.028 
0.0333733 0.4805150 1.6894371 1.9415698 

a (au) 0.092319 ± 6 × 10 −6 0.9376 ± 0.0015 1.521 ± 0.001 5.243 ± 0.023 
0.0923201 0.9358533 1.5204938 5.2228363 

e cos � −0.086 ± 0.067 −0.060 ± 0.014 0.057 ± 0.012 0.018 ± 0.012 
e sin � −0.063 ± 0.067 −0.031 ± 0.015 0.016 ± 0.008 0.026 ± 0.012 
e 0.127 ± 0.057 0.069 ± 0.014 0.060 ± 0.011 0.034 ± 0.012 

0.0093112 0.0729955 0.0563256 0.0378130 
� (deg) 215 ±(36,38) 207.5 ±(11.4,11.9) 16.4 ±(10.3,8.2) 56.4 ± 21.0 

52.8721947 217.8362502 19.7788422 52.2928770 
M (deg) 218 ±(34,38) 53 ± 14 278 ±(9,10) 187 ±(21,20) 

25.8318188 36.6741123 272.3695792 187.6140820 
λ (deg) 76.9 ± 10.7 260.0 ± 4.0 293.3 ± 1.1 243.1 ± 2.1 
V 0 (m s −1 ) CORALIE: 13.10 ± 0.43, UCLES: −7.74 ± 1.14, HARPS 1 : 1.10 ± 0.30, HARPS 2 : −3.94 ± 0.32 
σ f (m s −1 ) CORALIE: 1.23 ± 0.20, UCLES: 5.88 ± (1.07,0.93), HARPS 1 : 0.45 ± 0.40, HARPS 2 : 1.51 ± 0.36 
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D 160691. Ho we ver, direct parametrization in terms of the N -
ody dynamics is obviously more accurate approach to explain
he RV variability when considering individual (local) best-fitting

odels. 
To justify the abo v e e xplanation, we compared the outcomes of

he Keplerian and Newtonian fits for data set D 2 in Table 2 , and
he results are illustrated in the (O–C) diagram in the right panel
n Fig. 2 . This time, the difference between the signals plotted
s a red curve in the residuals diagram has much less variability,
ith the largest differences � 5 m s −1 appearing for epochs without
ata. 
As noted abo v e, an important feature of the posterior distributions

s well bounded parameters for all planets. In particular, the semima-
or axes of the middle pair, near 2e:1b-MMR (Rocinante–Quijote)
re constrained to � 0.0015–0.002 au, and for the outermost Sancho
lanet to just � 0.02 au, i.e. its orbital period may be determined with
he uncertainty of one month (25–50 times better than with the data
n 2006). That seems to be quite surprising, since the observational
indow co v ers only about 1.5 times the period of this companion.
imilarly, the Poincar ́e elements ( x i = e i cos � i , y i = e i sin � i ) of

he Saturn- and Jovian planets may be determined to ±0.01, with
ncertainties of the arguments of pericentre and the mean anomalies
t the osculating epoch t 0 on the level of ±15 ◦. This translates to
he mean longitude at the epoch λi that may be determined to � 4 ◦.
he eccentricities in the Keplerian and Newtonian parametrizations
NRAS 00, 1 (2022) 
Tables 1 –2 ) are at the 0.05 level with small uncertainties, as we will
ho w belo w, may be crucial for maintaining the long-term stability
f the system. 
We should also comment on similarities and difference between

olutions derived for data sets D 1 and D 2 in this work, and with the
eplerian model in Benedict et al. ( 2022 ). 
We obtained very similar eccentricities of the planets, particularly

he innermost eccentricity constrained to e 1 � 0.1. Given the old
ge of the star � 6.7 Gyr and short orbital period � 9.64 d of
he warm Neptune, its eccentricity might be tidally circularized.

e conducted direct numerical integrations of the system with
ll planets for a few Myr using the SABA 4 integrator (Laskar &
obutel 2001 ) with the step size of 0.5 d, and we did not detect

uch a large eccentricity which could be forced by interactions with
he outer planets. Actually, HD 160691d seems to be a common
xample in the known sample of warm Neptunes that exhibit non-
ero eccentricity, typically around 0.15 (Correia, Bourrier & Delisle
020 ). They found mechanisms opposing gravitational tides, such as
hermal atmospheric tides, e v aporation of the atmosphere, and the
ccentricity excitation from a distant companion. The later seems to
e not the cause of the moderate eccentricity of HD 160691d, but
he presence of atmospheric tides may be sufficient to explain its

oderate value. 
The most significant difference between the solutions in Benedict

t al. ( 2022 ) and in this work is relatively shorter orbital period of
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Table 2. Best-fitting parameters of the μ Arae (Cervantes) system for the Keplerian (Fits IIK) and Newtonian (Fits IIN) 
parametrization, data set D 2 . The osculating epoch is the date of the first observation in the UCLES data set. The system is 
coplanar with the inclination I = 90 ◦ and nodal longitudes � = 0 ◦. The stellar mass is 1 . 13 m 
 (Bonfanti et al. 2015 ) as used by 
Benedict et al. ( 2022 ), and close to 1 . 10 ± 0 . 02 m 
 in (Soriano & Vauclair 2010 ). The RV offsets are computed w.r.t. the mean RV in 
each individual data set. Uncertainties are estimated around the median values μ, i.e. [ μ − σ , μ + σ ] as the 16th and 86th percentile 
of the samples. Numerical values for Fit IIN selected from MCMC samples with low RMS are quoted to the 7th digit after the dot, to 
make it possible to reproduce the dynamical maps and direct numerical integrations. The mean longitude λ = � + M at the epoch 
was computed from the MCMC samples. 

Planet HD 160691d (Dulcinea, 1) HD 160691e (Rocinante, 2) HD 160691b (Quijote, 3) HD 160691c (Sancho, 4) 

Fit IIK (Keplerian model of the RV, data set D 2 , RMS = 3.4 m s −1 ) 
K (m s −1 ) 2.84 ± 0.17 12.36 ± 0.30 35.81 ± 0.20 22.7 ± 0.26 
P (d) 9.638 ± 0.001 308.36 ± 0.29 644.92 ± 0.29 4019 ± 24 
e cos � −0.052 ± 0.037 −0.073 ± 0.014 0.036 ± 0.011 −0.001 ± 0.011 
e sin � −0.024 ± 0.040 −0.012 ± 0.017 0.025 ± 0.008 0.054 ± 0.011 
e 0.071 ± 0.034 0.076 ± 0.014 0.045 ± 0.008 0.055 ± 0.011 
� (deg) 204 ± 41 189 ± 13 35.1 ±(14.3,12.6) 91 ± 12 
M (deg) 225 ±(41,44) 62 ± 13 258.3 ±(12.5,14.3) 147 ± 11 
λ (deg) 69.0 ± 10.5 250.7 ± 4.1 293.4 ± 0.9 237.7 ± 1.9 
V 0 (m s −1 ) CORALIE: −7.36 ± 1.10, UCLES: 0.77 ± 0.25, HARPS: 2.12 ± 0.20 
σ f (m s −1 ) CORALIE: 5.33 ± 0.99, UCLES: 0.68 ± 0.49, HARPS: 1.80 ± 0.14 

Fit IIN (Newtonian model of the RV, data set D 2 , RMS = 3.4 m s −1 ) 

m sin I ( m Jup ) 0.032 ± 0.002 0.448 ± 0.011 1.65 ± 0.009 1.932 ± 0.022 
0.0297566 0.4558348 1.6608084 1.9478583 

a (au) 0.092319 ± 5 × 10 −6 0.9347 ± 0.0015 1.522 ± 0.001 5.204 ± 0.021 
0.0923174 0.9342193 1.5209196 5.2065203 

e cos � −0.065 ± 0.050 -0.047 ± 0.013 0.035 ± 0.011 −0.003 ± 0.011 
e sin � −0.034 ± 0.050 -0.026 ± 0.014 0.019 ± 0.008 0.047 ± 0.011 
e 0.090 ± 0.042 0.055 ± 0.014 0.041 ± 0.009 0.049 ± 0.011 

0.0172379 0.0447130 0.0423168 0.0242568 
� (deg) 207 ±(39,41) 209 ±(13,14) 28 ±(16,13) 94.1 ± 13.4 

285.3319635 215.5470967 14.4134097 88.4886424 
M (deg) 221 ±(40,44) 45 ±(16,15) 265 ±(14,16) 145 ± 13 

147.4681451 39.3680159 276.3668580 150.2821658 
λ (deg) 71 ± 10 254.6 ± 4.4 293.0 ± 1.0 239.0 ± 1.9 
V 0 (m s −1 ) CORALIE: −7.2 ± 1.1, UCLES: 0.87 ± 0.26, HARPS: 2.25 ± 0.19 
σ f (m s −1 ) CORALIE: 5.3 ± 1.0, UCLES: 0.48 ± 0.42, HARPS: 1.69 ± 0.14 
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D 160691c, by � 100 d (yet only � 2 per cent ) in Benedict et al.
 2022 ). They report this solution as strongly unstable in 100 Kyr
ime-scale, in contrast to our models, which appear safely stable in 
 xtended re gions of the parameter space, for at least 6.7 Gyr, as
iscussed below. 
We attempted to address outlying UCLES measurements, visible 

n the right end of the observation window (Fig. 2 ). There are
ystematic deviations from the synthetic model, reaching � 10 m s −1 ,
nd unlikely they can be eliminated with the standard RV ephemeris. 
he HARPS and UCLES epochs o v erlap almost throughout the 

ime window, but the HARPS measurements do not deviate as 
ystematically as the UCLES data from the common model. This can 
e explained by a long-term instrumental UCLES effect. In order to 
ccount for it, we added a periodic drift to the Keplerian RV model
or the UCLES data RV drift ( t ) = A cos ( nt + φ0 ), where A , n , and φ0 

re the semi-amplitude, frequency, and relative phase of the signal, 
espectively. 

As the result of the MCMC sampling of the Keplerian model 
ith this modification, we show (O–C) for the best-fitting model in 
ig. 4 and a section of the corner plot for the posterior with offsets,
rror floors, and drift parameters (on-line Supplementary Material, 
ig. S2). Note that in this case we analyzed only the concurrent
ARPS and UCLES RV series (data set D 3 ). It turns out that the
rift component can significantly reduce the UCLES outliers. The 
rift correction reduces the RMS value to 2.5 m s −1 , which is almost
 m s −1 less than the value for the unmodified model. Ho we ver,
he posterior distributions reveal that the drift’s long period P =
 π / n � 36 yr cannot be meaningfully constrained. Moreo v er, its
alf-amplitude A � 12–15 m s −1 is weakly limited on the right end,
nd strongly correlated with the RV offset V 0, 2 ≡ V 0, UCLES , as it is
abeled in the corner plot for the UCLES data. At the same time, the
rbital parameters have not changed except for the period of P 4 �
3944 ± 27) d, significantly shorter than P 4 � 4020–4060 d in our
odels without drift, but similar to P 4 � 3947 d in the solution of
enedict et al. ( 2022 ). 
Gi ven some v ariability in the residuals to the Keplerian and

ewtonian models in Fig. 2 , we analyzed them with the Lomb–
cargle periodogram, in the period window from 2 d to 64 000 d.
he results are shown in Fig. 4 . Indeed, the (O–C) in the left-hand
anel for the Keplerian 4-planet model to the data set D 2 shows
ome signature of the long-term drift. Ho we ver, we did not detect
ny significant peak at the 1 per cent false alarm probability estimated
y the bootstrap method at a level of � 0.07. We performed the same
est on the residuals to the Keplerian 4-planet model with sinusoidal
rift added to the UCLES data. It is clear that the long-term drift
eriod has disappeared, and there are still no significant peaks in the
igh frequency range. The (O–C) analysis suggests that we could not
etect any significant RV signal that can be attributed to a new planet
n the system. 
MNRAS 00, 1 (2022) 
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Figure 2. Left-hand panel: synthetic curves of the best-fitting Keplerian model to D 2 data set, depicted as Fit IIK in Table 2 (light-green curve) and its 
Newtonian interpretation (light-blue curv e) o v erplotted on the RV data. The difference between the RV signals illustrates a red curve in the residuals (O–C) 
panel for the Keplerian ephemeris. Symbols describe the RV measurements from different spectrometers: green pentagons are for CORALIE, brown/red circles 
are for HARPS and blue diamonds are for UCLES. Error bars in the (O −C) diagram include the error floor parameters. The shaded rectangle marks the 
time-span of the RV data in Go ́zdziewski et al. ( 2007 ) and Pepe et al. ( 2007 ). Right-hand panel: Synthetic curves of best-fitting Keplerian (light-green curve) and 
Newtonian models (light-blue curve) to D 2 data set, depicted as Fit IIK and Fit IIN (Table 2 ), and o v erplotted on the RV data. The difference between the signals 
illustrates a red curve in the Keplerian residuals (O–C) panel. Parameters of the models correspond to the maxima of posterior samples. Symbols describe the 
RV measurements from different spectrometers: green pentagons are for CORALIE, brown circles are for HARPS and blue diamonds are for UCLES. Error 
bars in the (O–C) diagram include the error floor parameters, and the shaded region is the RV data span prior to the analysis conducted in 2006. 
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These results are consistent with the conclusions in the work of
enedict et al. ( 2022 ). They did not detect any correlation of the
V variability attributed to the planets with the periodicity of the
pectral line profile distortion indicators. They found peaks of the
isector with low significance, around 357–368 and 497 d, which
an be explained by stellar activity. 

Since the inclusion of RV drift appears problematic due to the
trong V 0,2 –A correlation, and the drift-modified model does not
ctually qualitatively change the orbital architecture and stability of
he system (as justified below), other than shortening the outermost
rbital period by � 2 per cent , we have abandoned this model.
o we ver, the likely instrumental nature and origin of the UCLES
V-outliers remains unexplained. 

 L O N G - T E R M  STABILITY  O F  T H E  SYSTEM  

he well bounded best-fitting parameter ranges make is possible
o simplify the analysis of the dynamical character of the system.

e conducted it with two fast dynamical indicators, the Mean
xponential Growth factor of Nearby Orbits (MEGNO, 〈 Y 〉 ; Cincotta
t al. 2003 ) and the Reversibility Error Method (REM; Panichi
t al. 2017 ). These numerical tools are CPU-efficient variants of
he Maximal Lyapunov Exponent (MLE) that make it possible to
etect unstable solutions and visualize the structure of the phase
pace. 

The usefulness of the MEGNO method in analyzing the dynamics
f planetary systems with strongly interacting companions has been
ro v en for a long time (e.g. Go ́zdziewski et al. 2012 , and references
herein). We have also shown in Panichi et al. ( 2017 ) that the REM
ndicator is not only equi v alent to MEGNO, but may be also much

ore CPU-efficient. Briefly recalling the idea of this algorithm,
omputing REM relies in comparing the difference between the
artesian initial condition x x x 0 after integrating it numerically forward
nd back, for the same number n of time-steps � t , using a time-
NRAS 00, 1 (2022) 
eversible numerical scheme, to obtain the final state x x x ( ±n�t). Then
he REM indicator is 

EM = || x x x 0 − x x x ( ±n�t) || . (6) 

his difference grows exponentially with integration time for chaotic
ystems, and at a polynomial rate for regular (stable) configurations.
uch a simple algorithm can be implemented with a symplectic
iscretization scheme. In practice, for systems with small and
oderate eccentricities, which μ Arae systems appear to be, we

se the classic leap-frog algorithm (e.g. Laskar & Robutel 2001 )
ith symplectic correctors of the order 5 (Wisdom 2006 ), offering
umerical accuracy and efficiency comparable to higher order meth-
ds (Wisdom 2018 ), see also Panichi et al. ( 2017 ) for details. As
e have shown, in the later paper, this REM algorithm is partic-
larly useful in regions of phase space with predominantly stable
olutions and outperforms then any MEGNO variant in terms of
PU-efficiency. 
In this work, to speed-up computations, we conducted the numeri-

al simulations using our μFARM code parallelized with the Message
assing Interface (MPI). For the numerical integrations of the N -
ody equations of motion for individual ICs, we used the SABA 4 

ymplectic scheme (Laskar & Robutel 2001 ) as well as Everhardt’s
lgorithm implemented in the REBOUND package (Rein & Spiegel
015 ). 

.1 Stability of the model based on data set D 1 

e first computed the 2D dynamical maps in the neighbourhood of
he Newtonian Fit IN in Table 1 , based on the original data set D 1 

rom Benedict et al. ( 2022 ). Fig. 6 illustrates the ( a 3 , e 3 )–plane. In
hese scans, all other orbital elements are kept at their best-fitting
alues listed in T able 1 . T o make possible reproduce the results, we
uote exact numerical values of the elements and masses. For each
nitial condition in the grid, the equations of motion were integrated
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Figure 3. 1D and 2D projections of the posterior probability distribution for orbital parameters of the innermost (left column) and the outermost (the right 
column) planet, respectively. The top row is for the Keplerian model, and the bottom row is for the Newtonian model to data set D 2 . The parameters are 
expressed in units consistent with Table 2 . The semi-amplitude K i is equi v alent to the mass m i , and the orbital period P i is equi v alent to the semimajor-axis a i . 
The MCMC chain length is 180 000 iterations for each of 384 different instances (w alk ers) selected in a small ball around a best-fitting solution found with the 
evolutionary algorithms for the Keplerian model, and 294 000 iterations in each of 176 w alk ers for the Newtonian model. Parameter uncertainties are estimated 
as 16th and 84th percentile samples around the median values at 50th percentile. 
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p to 200 Kyr, corresponding to � 1.8 × 10 4 P 4 . This time interval
llows for the detection of short-term chaotic motions for the time- 
cale of the MMRs instability (e.g. Go ́zdziewski & Migaszewski 
018 ). 
Some of the dynamical maps were computed for 3-planet systems 

ith the most massive planets, omitting the innermost warm Neptune. 
ts very short orbital period of 9.64 d compared to that one of the
utermost planet ( � 4000 d) causes a huge CPU o v erhead. Before
hat, we investigated whether the presence of Dulcinea could affect 
he orbital evolution of the other massive companions and such 3-
lanet maps. To this end, we numerically integrated the systems 
escribed by Fit IN, with and without the warm Neptune, for several
yr, when secular effects may already play a role. Fig. 5 illustrates

he resulting osculating semimajor and eccentricity o v er a narrow
MNRAS 00, 1 (2022) 
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Figur e 4. Lomb–Scar gle periodograms for residuals to the Keplerian Fit IIK in Fig. 2 (left-hand panel, data symbols are the same as in Fig. 2 ) and to the residuals 
to the best-fitting Keplerian model with a hypothetical, instrumentally induced periodic term A cos ( nt + φ0 ) in the UCLES measurements, o v er-plotted on the 
RV measurements from UCLES and HARPS spectrometers (right-hand panel). Brown circles are for HARPS and blue diamonds are for UCLES instrument, 
respectively. Red filled circles mark the orbital periods of the detected planets. 

Figure 5. Temporal evolution of the osculating semimajor axis (top panel) 
and eccentricity (bottom panel) for planet HD 160691b in a narrow time 
window around 2.8 Myr. In each panel, curves with different colour illustrate 
solutions for two ICs, with and without the innermost planet. In the later case, 
we added its mass to the mass of the star. Elements of the planets included in 
the integrated system in both experiments are the same (Fit IN, Table 1 ). The 
systems were integrated with the SABA 4 symplectic scheme with the step 
size of 0.5 d. 
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ime interval around 2.8 Myr for Quijote (HD 160691b). Clearly, the
lements span the same ranges and evolve along curves with very
imilar shapes. Their de-phasing is due to a small change of the mean
otion and other elements. The most significant shift can be seen

or Sancho (HD 160691c, not shown here), yet its semimajor axes is
hifted by � 0.002 au, roughly 10 times less than 1 σ uncertainty for
his orbital element. 

To study whether the innermost planet can be omitted from the
ystem for long-term inte grations, F arago, Laskar & Couetdic ( 2009 )
NRAS 00, 1 (2022) 
veraged the model for the fast orbiting innermost planet. Obviously,
uch an analytical model is numerically as CPU efficient, as the 3-
lanet model. Moreo v er, the y found for the particular μ Arae case
he results from three formulations of the orbital evolution: the exact
averaged) one, the 3-planet model with omitted warm Neptune, and
he 3-planet model with its mass added to the mass of the star lead
o barely distinct results. 

To test this independently, and without any simplifications of
he equations of motion, we used the REM indicator directly and
ompared dynamical maps for the 3- and 4-planet configurations,
espectively, for the same ranges of orbital parameters. 

We start with the upper-left panel in Fig. 6 for a relatively broad
egion of the ICs marked with a star symbol. That map was computed
ithout the innermost Neptune, using the leap-frog scheme and
 time-step of 8 d. A wide structure around a 3 � 1.47 au on the
eft of this IC corresponds to the 2b:1c MMR of the inner pair
f Saturn–Jupiter-mass planets. Given the small 1 σ uncertainty
.001 au of the nominal semimajor axis, the separation of the best-
tting configuration from this MMR is meaningful (the error bars
re smaller than the symbol radius). Simultaneously, the ICs is
ocated between three narrow strips of unstable solutions that may
e identified with higher order resonances. Close-up maps in the
emaining panels of Fig. 6 reveal a very close proximity of the ICs
o one of these strips. 

Panels in the bottom row are for the same ( a 3 , e 3 )-plane, but
canned with 〈 Y 〉 for the 3-planet model (bottom-left panel) and
ith REM calculated for the full 4-planet configuration (bottom-

ight panel), but with a much smaller step size of 0.33 d and lower
esolution compared to the 3-planet REM-map computed with the
eap-frog step-size 8 d (upper-right panel). Of course, this is forced
y the short orbital period of HD 160691d. The maps clearly illustrate
he one to one results, in a region with weakly unstable configurations
nd different, very fine dynamical structures. We may note that the
Cs is negligibly shifted by � 10 −5 au with respect to the unstable
tructure, between the 3-planet and 4-planet scans. 

While the REM map for three planets was calculated several
imes faster than the 〈 Y 〉 map, the full REM calculation for four
lanets was more than 15 times slower per pixel. Such over-
ead is acceptable, ho we ver, gi ven that the calculations were per-
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Figure 6. Dynamical maps for the best-fitting N -body Fit IN (Table 1 ) to data set D 1 . Top-right and bottom panels are for a close-up of the scan shown in 
top-left panel. The fast indicators log | REM | � −4 and 〈 Y 〉 � 2 characterize regular (long-term stable) solutions, which are marked with black/dark blue colour; 
chaotic solutions are marked with brighter colours, up to yellow. The integration time of each initial condition is 200 Kyr ( ∼1.8 × 10 4 × P 4 ). Panels in the 
right column are for the 3-planet model omitting the warn Neptune, and for the full 4-planet configuration, respectively. The REM indicator was computed with 
the leap-frog with the step size of 8 d (3-planet map) and 0.33 d, respectively (bottom scan). The MEGNO scan (bottom-left panel) was computed for 3-planet 
model with the Gragg–Bulirsch–Stoer (GBS) algorithm (Hairer, Nørsett & Wanner 1993 ; Hairer & Wanner 1996 ). The asterisk symbol means the position of 
the nominal model. Diamond and triangle symbols are mark the ICs tested with the direct numerical integrations for 6.7 Gyr, see the text. Resolution for the top 
and bottom-left plots is 640 × 360 points, and 360 × 200 points for the bottom-right scan. 
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Figure 7. Evolution of a selected critical angle θ2 e : −4 b : −1 c of the three-body 
MMR of the outer planets for the initial condition marked in dynamical maps 
in Fig. 6 with a white diamond. 
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ormed without any simplification of the Newtonian equations of 
otion. 
The detection of fine unstable structures and tiny islands of stable 

esonances confirms once again a good sensitivity of the REM 

lgorithm for stable and unstable solutions. To show this better, 
e interpreted the unstable strip structure through the numerical 

nalysis of the fundamental frequencies (NAFF; Laskar & Robutel 
001 ) of a particular system marked with a white diamond symbol
n a small stable island around ( a 3 , e 3 ) � (1.5211 au, 0.01). This
sland is a part of the three-body MMR 2e: −4b:1c structure (one
f the strips spanning e 3 ∈ [0, 0.1]). We plotted evolution of a
elected critical angle of this resonance θ2: −4: −1 = 2 λ2 − 4 λ3 −
4 + � 2 + � 3 + � 4 in Fig. 7 . This critical angle librates with large
mplitude around 180 ◦, and the orbital configuration is perfectly 
table for at least 1 Gyr, consistently with its location in the stable
sland. 

In contrast, we selected formally unstable ICs by shifting the 
ominal semimajor axis to the right (to the unstable strip) and marked
ith a black triangle symbol (see close-up panels in Fig. 6 ). We

ntegrated this ICs for 6.7 Gyr with the SABA 4 scheme and for

T  
 Gyr with the variable step-size IAS15 integrator. Also in this case
he system does not reveal any signature of geometric instability, in
pite of its formally chaotic character in the sense of MLE (it is not
llustrated here, but we invoke a similar example in Section 3.2.2 ).
he width of this third-order MMR is very small, � a 3 � 0.003 au,
MNRAS 00, 1 (2022) 

art/stac2584_f6.eps
art/stac2584_f7.eps


12 K. Go ́zdziewski 

M

a  

d
 

c
�  

o  

d  

e  

b  

o  

t  

t  

v  

w  

t  

s  

fi

3

A  

a  

H  

t  

b  

s  

‘  

0  

u

3

G  

i  

2  

c  

l  

c  

(  

s  

o  

c  

a
 

T  

3  

r  

N  

c  

t
 

t  

e  

p  

a  

t  

C  

T  

i  

c  

l  

a

Figure 8. Dynamical maps for Newtonian Fit IIN (Table 2 ) to data set 
D 2 . The REM with log | REM | � −4 characterize regular (stable) solutions 
marked with black/dark blue colour; chaotic solutions are marked with 
brighter colours. The integration time of each ICs is 200 Kyr ( ∼1.8 × 10 4 ×
P 4 ). The top panel is for 3-planet model (the warm Neptune’s mass added 
to the star mass), and the middle panel is for all planets. The bottom panel 
is for the REM scan in the plane of Keplerian period ratios, for 3-planet 
model. The REM was computed with the leap-frog with the step size of 8 d 
for 3-planet, and 0.33 d for 4-planet scans, respectively. The asterisk marks 
the nominal ICs and diamond marks the qualitative position of the ICs in 
Pepe et al. ( 2007 ), see their Fig. 7 . Resolution for the top plot is 1140 × 360, 
560 × 200 for the middle plot, and 720 × 720 pixels for the bottom plot. 
The cross centred at the ICs marks 1 σ error bars (0.0015 au, 0.014) for the 
( a 2 , e 2 )-plane, as in Table 2 , and for the period ratios (0.005,0.042)-plane, 
respectively. The grey rectangles are for 3 σ region. 
nd the diffusion is likely so slow that it does not lead to a change or
isruption of the system. 
We remark here that Benedict et al. ( 2022 ) found quite an opposite,

atastrophic instability of the system. In their Keplerian solution, P 4 

 (3947 ± 23) d is apparently the only significant difference with
ur fits (Table 1 ). The origin of this discrepancy may be a subtly
ifferent parametrization of the RV signal. For instance, Benedict
t al. ( 2022 ) did not fit the jitter uncertainties as free parameters,
ut tuned it posteriori for each data set to obtain χ2 

ν � 1. Moreo v er,
ur models yield smaller RMS � 3.4 m s −1 rather than � 3.8 m s −1 in
he prior work. A shorter period of P 4 � 3947 d may be pointing
o an unstable structure close to a 4 � 5.12 au (similar to that one
isible in the top-left panel in Fig. 10 ). We integrated the system
ith the outermost planet Sancho placed in this unstable zone, but

he system survived for at least 1 Gyr. We could not reproduce the
trong instability reported in (Benedict et al. 2022 ), and we cannot
nd any convincing explanation of this discrepancy. 

.2 Stability of the Newtonian model based on data set D 2 

s mentioned abo v e, we also conducted the GEA and MCMC
nalysis for data set D 2 . The results are very similar to the D 1 case.
o we ver, there are some subtle qualitative changes with respect to

he models for D 1 . The eccentricities of the Jovian planets tend to
e systematically even smaller than for the D 1 -systems. Also the
emimajor axes and orbital periods locate the systems in even more
safe’, stable zone displaced from the 6b:1c MMR by more than
.1 au, which corresponds to � 5 σ in terms of the semimajor axis
ncertainty. 

.2.1 The 2e:1b MMR proximity 

o ́zdziewski et al. ( 2007 ), Pepe et al. ( 2007 ) and Farago et al. ( 2009 )
nvestigated the proximity of the inner pair HD 160691e-b to the
e:1b MMR. In the two later papers, they found the best-fitting model
lose to the separatrix, unstable zone of this resonance. Contour
evels of χ2 

ν encompass both the near-resonance and the resonant
onfiguration (Pepe et al. 2007 , their fig. 7). In Go ́zdziewski et al.
 2007 ), we also found that the relative position of the ICs and the
hape of the 2e:1b resonance in the ( a 3 , e 3 )-plane strongly depend
n the semimajor axis of HD 160691c that could be only weakly
onstrained to ±1300 d (4–7 au) and eccentricity e 4 as large as 0.2
t the time. 

We can now revisit this issue with a significantly updated Fit IIN.
o do so, we calculated the dynamical maps illustrated in Fig. 8 for the
-planet (upper panel) and 4-planet (middle panel) configurations,
espectiv ely. F or the 3-planet model, we added the mass of innermost
eptune to that of the star. It can be clearly seen that the two maps

oincide in each detail, and any shift in the position of the ICs relative
o the fine structures is barely noticeable. 

The coordinates of the dynamical maps were chosen to match
he NAFF maps in (Pepe et al. 2007 , their fig. 7) and in (Farago
t al. 2009 , their fig. 3). Since a direct comparison of the maps is not
ossible, due to changes in elements in the ICs, we have marked with
 diamond a qualitative position of the former initial state relative
o the approximate shape of MMR 2e:1b and its separatrix zone.
learly, the Fit IIN is shifted from the separatix border by � 5 σ .
his statistically pro v es that the nominal system is not resonant and

s in a safely stable zone. The narrow stripes of unstable motions
an be identified with weak, higher-order 3-body MMRs with very
ong diffusion time-scales, similar to the 2e:-4b:-1c MMR analyzed
bo v e. 
NRAS 00, 1 (2022) 
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Figure 9. 1D and 2D projections of the posterior probability distribution for 
the planet masses and the system inclination, illustrating MCMC samples for 
the Newtonian model fitted with I as a free parameter. Upper plot: The result 
for data set D 2 . The MCMC chain length is 400 000 iterations ( � 15 times the 
greatest autocorrelation time) in each of 144 different instances selected in a 
small ball around Fit IIN (Table 2 ), completed with I = 45 ◦. Lower plot: The 
result for data set D 3 composed of HARPS and UCLES measurements. The 
MCMC chain length is 500 000 iterations in each of 144 different instances 
selected in a small ball encompassing Fit IIN (Table 2 ) computed for the 
osculating epoch in the middle of the data window and completed with the 
initial value of I = 45 ◦. Parameter uncertainties are estimated as 16th, and 84th 
percentile samples around the median values (50th percentile) and marked 
with dashed lines on the 1-dim histograms. Masses m 1, 2, 3, 4 ≡ m e, d, b, c 

expressed in Jupiter masses, and the inclination I in degrees. 
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These conclusions can be reinforced with a REM map for the three
uter planets in the semimajor axes space, represented in the orbital
eriod ratios ( P 3 / P 2 , P 4 / P 3 )-plane, as the astrocentric Keplerian
escription of the semimajor axes, see the bottom panel of Fig. 8 .
ere, we marked 1 σ and 3 σ uncertainties the same as in the previous
anels. We computed them based on the MCMC samples. In this map,
he 2-body MMRs are marked with vertical (some of them labelled)
nd horizontal curves. Skewed curves and lines are for 3-body MMRs
nd could be identified with a method described in (Guzzo 2005 ).
lso this REM map reveals the Fit IIN safely separated from the
e:1b MMR by several σ . 

.2.2 Stability limits depending on inclination 

inally, we performed direct MCMC sampling with the inclination 
dded as a free parameter to the Newton co-planar model. As
xpected, since the RV time series are relatively short covering �
.5 periods of the outermost planet, the inclination may be only
eakly constrained in the assumed interval [5 ◦, 90 ◦]. There should
e also strong, almost linear correlations between the masses and 
ass-inclination correlation due to the m sin I de generac y. 
Ho we ver, this intuition seems insufficient in light of the MCMC

ampling results for data set D 2 , illustrated in Fig. 9 (upper plot).
t shows posterior histograms for all masses m 1, 2, 3, 4 and for the
nclination I as a free parameter. In addition to the predicted strong

ass-inclination correlation, we found a clear, well-defined posterior 
aximum for I � 30 ◦. We tested this effect in multiple MCMC

ampling experiments, varying the initial solution and sampling 
onditions. 

Since, due to parameter correlations, the estimated autocorrelation 
ime is as many as 25,000 iterations, we sampled up to 400 000 steps
or each of 144 w alk ers, corresponding to 15–20 autocorrelation
imes. As a starting point for the sampling, we took Fit IIN in
able 2 supplemented with I = 20 ◦, 45 ◦, 60 ◦, and 75 ◦, respectively.
nterestingly, in all cases, regardless of the initial I , the extremum
s robust and occurs around I � (30 ◦ ± 10 ◦). At the same time,
e monitored the RMS > 3.4 m s −1 for best-fitting solutions, which

ises significantly to RMS � 3.6–3.8 m s −1 below I > 30 ◦. This means
hat the RV data predicts all planetary masses safely below the brown
warf limit, i.e. the physical masses can be at most 2–3 times the
inimum masses. 
To assess the statistical significance of this result, we computed the

ayesian information criterion (BIC) defined as (e.g. Claeskens & 

jort 2008 ) 

IC = p ln N RV − 2 ln L max , 

or the Newtonian model, for the edge-on system with I = 90 ◦

nd for a model with variable I , with p = 26 and p = 27 of free
arameters, respectively; N RV = 411, and ln L max is the value of ln L
 v aluated at the posterior e xtremum. F or the two models, we found
n L max ( θθθ, I = 90 ◦) = −987 . 07 and ln L max ( θθθ, I ) = −987 . 7, re-
pectively, hence BIC ( θθθ, I = 90 ◦) = 2130 . 62, and BIC ( θθθ, I ) =
137 . 96, respectively. Therefore 

 BIC = BIC ( θθθ, I = 90 ◦) − BIC ( θθθ, I ) � −7 < 2 , 

ndicating that there is no evidence of the model with free incli-
ation against the edge-on model with a smaller value of BIC, see
laeskens & Hjort ( 2008 ). Ho we ver, if we apply the second-order
kaike information criterion (AIC) for small sample sizes ( N RV / p �
5 < 40), 

IC = 2 p + 2( p + 1) / ( N RV − p − 1) − 2 ln L max , 
MNRAS 00, 1 (2022) 
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Figure 10. Dynamical maps for the best-fitting coplanar N -body Fit IIN (Table 2 ) to data set D 2 , extended to the inclination I space. Subsequent panels are for 
solutions selected from MCMC samples for the Newtonian model with varied inclination I , illustrated in Fig. 9 , upper plot. The colour scale is the same, as in 
Fig. 6 . The integration time of each initial condition is 300 Kyr ( ∼2.7 × 10 4 × P 4 ); we used the leap-frog scheme with the step size of 8 d. The asterisk symbol 
means the elements of the nominal fits. The inclination of the orbital plane is described in the top-right corner of each panel. An approximate position of the 
6b:1c MMR is labeled. Resolution of the plots is 720 × 360 points. 
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hen � AIC < 2 for the two concurrent fit models, and that the
andidate model is indicated almost as good as the best edge-on
odel (Claeskens & Hjort 2008 ). We consider this as a marginal

ndication of the significance of the inclined model, which needs to
e addressed with longer RV time series. 
Furthermore, we examined this effect for the D 3 data set, consist-

ng of only the most accurate HARPS and UCLES RVs, and also
hanged the osculating epoch of the Newtonian model to the middle
f the RV time series. In this experiment, we also increased the
umber of iterations to 500 000 steps for each of the 144 w alk ers. As
 starting ICs, we chose Fit IIN from Table 2 with an initial value of
 = 45 ◦, but without any prior tuning of this solution. The results are
hown in Fig. 9 , lower plot. In this case, the posterior distribution is
hifted toward I = 20 ◦. This may further indicate a systematic but
eak dependence of the Newtonian model on the inclination, which

s also sensitive to the RVs changes. 
The stability zone and fine unstable structures for inclined co-

lanar systems are illustrated in dynamical maps in the ( a 4 , e 4 )-
lane (Fig. 10 ) constructed for different inclinations of the co-planar
ystem. We selected the best-fitting solutions from the MCMC
amples with lowest RMS � 3.35 m s −1 detected, and close to
articular, a’priori fixed inclinations. Subsequent panels are for such
est-fitting models with the inclination equal to I = 90 ◦ (the nominal
NRAS 00, 1 (2022) 
it IIN in Table 2 ), I = 60 ◦, I = 45 ◦, and I = 33 ◦, respectively. In
he later case, the planet masses are twice as large as in the nominal,
dge-on system. Moreo v er, the orbital elements selected from the
CMC samples are slightly different, thus introducing variability

onsistent with parameter uncertainties to the elements behind the
ap coordinates. 
To ef fecti v ely illustrate the re gion of stability with respect to I

n a more global way, we scaled the minimal masses in Fit IIN
ccording to the minimum mass rule m i sin I = const, recalling the
ass-inclination correlation. We then calculated the dynamical maps

n the ( I , e 2 ) plane (Fig. 11 ). For reference, the second upper x axis
n these maps is for the mass of HD 160691e scaled with sin I . 

Although, as we have shown, the influence of the warm Neptune is
egligible for the dynamical evolution of the outer planets when their
asses are minimal, this may not be the case for small inclinations.
e therefore calculated two versions of the REM maps, for three-

top panel) and four-planets (middle panel), respectively (the later
ith lower resolution to save CPU time). It can be clearly seen that

n the range of I ∈ [5 ◦, 90 ◦], which co v ers the variation of masses
panning one order of magnitude, all, ev en v ery fine features of the
hase space remain the same. 
Finally, we constructed a REM map in the orbital period ratios

lane shown in Fig. 11 (bottom panel) around I = 20 ◦, similar

art/stac2584_f10.eps
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Figure 11. REM dynamical maps for the N -body Fit IIN (Table 2 ) to data set 
D 2 , and planet masses scaled with m sin I rule. Values log | REM | � −4 are 
for long-term stable solutions marked with black/dark blue colour; chaotic 
solutions are marked with brighter colors, up to yellow. For the top and middle 
panels, the integration time of each ICs is 200 Kyr ( ∼1.8 × 10 4 × P 4 ), and 
for the bottom panel it is 300 Kyr ( ∼2.7 × 10 4 × P 4 ). The top panel is for 
the 3-planet model with the mass of the warm Neptune added to the mass of 
the star, and the middle panel is for all 4-planets, respectively. The upper axis 
marks the mass of m 2 rescaled according to the m sin I rule. The bottom panel 
is for the REM map in the orbital period ratios ( P 3 / P 2 , P 4 / P 3 )-plane, around 
the nominal ICs found for I � 20 ◦, close to the posterior maximum in Fig. 9 , 
bottom plot. Some MMRs are labelled. The REM indicator was computed 
with the leap-frog step size of 8 d for 3-planet and 0.33 d for 4-planet scans, 
respectively. Resolution is 640 × 360, 360 × 200, and 512 × 512 for the 
subsequent plots, respectively. 

Figure 12. Time-evolution of the semimajor axis of HD 160691c (drawn in 
magenta) for the nominal system marked in the lower panel of Fig. 11 with 
the star symbol, and for a system shifted to the nearby unstable 3-body MMR 

structure (drawn in green) respectively. The configurations were integrated 
with SABA 4 scheme and the step size of 16 d for 6.7 Gyrs. Chaotic diffusion 
for the unstable resonant model is apparent. (The ICs for this model is given 
in the Supplementary Material on-line). 
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o the scan in Fig. 8 . In this case, the masses of the planets
re (1 . 34 , 4 . 91 , 5 . 85) m Jup , i.e. the minimum masses scaled by a
actor 3. We integrated each point for 300 kyr forward and back with
he leap-frog scheme and the step size of 8 d. The ICs is located in a
enser network of 2-body and 3-body MMRs, but still well separated
rom the 2e:1b MMR. We can also observe the high sensitivity of
EM to interacting MMRs, indicated by in their regions of overlap

crossings). 
Since the ICs is very close to an unstable 3-body MMR, we

erformed a comparativ e inte gration of the nominal system and
 configuration slightly shifted so that it is located in this nearby
nstable MMR region (yellow strip in the lower panel of Fig. 11 ).
e used the SABA 4 scheme and the step size of 16 d, keeping

he energy integral to 10 −10 on the relative scale. In both cases, the
ystem surviv ed inte grations for the lifetime of the star (6.7 Gyr).
uch narrow chaotic 3-body MMRs, similar to that one analysed 

n Fig. 4 do not appear ‘dangerous’ for the long-term stability. The
haotic configuration reveals only weak diffusion of a 4 and e 4 . This
s illustrated in Fig. 12 . 

The general conclusion of this experiment is a relatively wide 
table zone preserved despite the enlarged minimal masses of the 
lanets 2–3 times. The limit of stable solutions for I = 15 ◦–20 ◦

oughly coincides with the shape of statistically detected posterior 
xtremum for I = 30 ◦ (data set D 2 ) and I = 20 ◦ for data set D 3 , as we
ound with the MCMC sampling. Systems with the most probable 
nclinations I = 60 ◦ in purely random sample would be in the middle
f a broad, stable zone. Such the likely inclination increases the
lanet masses by only 15 per cent . 
Moreo v er, the clear posterior maxima for I � 30 ◦ and I � 20 ◦ found

ere (still, in the stable zone) may confirm the marginally detected
ias toward small inclinations of multiple systems, investigated with 
he HST astrometry in Benedict et al. ( 2022 ). We should also note
hat for μ Arae very small inclinations I � 10 ◦ can apparently be
uled out on both statistical as well as on dynamical grounds. 

 POSSIBLE  DEBRI S  DI SCS  A N D  SMALLER  

LANETS  

ased on the updated, rigorously stable and well-constrained orbital 
olutions collected in Table 2 , we simulated the dynamical structure
f hypothetical debris discs in the system. In the large ‘gap’ between
he two outer planets, at � 1.52 and 5.2 au, respectively, we can
redict orbitally stable objects with masses that are below the present
MNRAS 00, 1 (2022) 
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etection levels. This region may be an analogue of the Main Belt
n the Solar system, given the striking similarity of the orbits of the
aturn- and Jupiter-mass planets to those of Mars and Jupiter. The
econd debris disc, located beyond the orbit of the outermost Jovian
lanet (Sancho), may be similar to the Kuiper Belt. There is also free
pace between the two innermost planets that may contain Earth-
ass objects, in the wide free space extending for � 0.9 au between

he orbits. 
We could try to reco v er the structure of the phase space using fast

ndicators, in the form of the dynamic maps shown earlier in Figs 6
nd 10 for the planets. Ho we ver, such maps constructed for fixed
rbital phases of test particles permitted to vary freely may reveal
n incomplete picture. The stability of a free test body in a system
epends not only on its semimajor axis and eccentricity ( a 0 , e 0 ), but
lso on its relative orbital phase with respect to massive planetary
erturbers. 
To circumvent this limitation, we introduced a concept of the so-

alled 〈 Y 〉 -model (or 〈 Y 〉 -disc) (Go ́zdziewski & Migaszewski 2018 ).
e assume that the massive planets form a system of primaries

n safely stable orbits robust to small perturbations. Then we
nject bodies with masses significantly smaller than masses of the
rimaries on orbits with different semimajor axes and eccentricities
panning the interesting region, and the orbital phases selected
andomly. Ne xt, we inte grate numerically the individual synthetic
onfigurations and determine their stability with the MEGNO aka
 Y 〉 fast indicator. For this experiment MEGNO is preferable o v er
EM since we may expect that most of the orbits are unstable.
s soon as MEGNO reaches a value 〈 Y 〉 � 5, sufficiently different

or 〈 Y 〉 � 2 for stable solutions, we can stop the integration, thus
aving CPU-time. We explain in detail the method and calibration
xperiments spanning orbital evolution of debris disks in the massive
our-planet HR 8799 system for up to 70 Myr in Go ́zdziewski &

igaszewski ( 2018 ). A comparison of the results of direct numerical
ntegrations with the outcomes of the 〈 Y 〉 -model confirms that these
wo approaches are consistent one with the other. Yet the 〈 Y 〉 -disc
ethod is CPU-efficient and therefore makes it possible to obtain
 clear, quasi-global representation of the structure of stable solu-
ions. This algorithm is especially ef fecti ve for strongly interacting
ystems. 

To conduct the 〈 Y 〉 simulations, we chose Fit IIN located in a wide
one of stable motions. Such a ‘safe’ neighbourhood is important for
he 〈 Y 〉 -model, since the system is not prone to small perturbations
 x erted by the probe objects – we integrate numerically the orbits of
ll bodies. Again, since we focus on the space beyond the orbit
f HD 160691e, a 0 � 0.9 au, we omitted the innermost planet
nfluence for the Main Belt and Kuiper Belt disks, to improve the
PU performance. Ho we ver, the ef fect of the innermost planet was

ncluded in the simulation of the dynamical map for the inner zone
etween the warm Neptune and the Saturn-like planet (upper left
anel in Fig. 13 ). 

We considered three types of probe objects in different mass
egime: Vesta-like asteroids with a mass of 3 × 10 −7 m Jup , massive

arth-like planets with a mass of 10 −2 m Jup , and super-Earths with

 mass of 3 × 10 −2 m Jup (equi v alent to � 10 Earth masses, in a
ub-Neptune mass range). The RV amplitude of the later objects
ould be on the level of 2–3 m s −1 , relatively easily detectable with

he present RV measurements accuracy. Also, in that case we set
he system inclination I = 60 ◦ to enhance the mutual gravitational
nfluence between the planets and the test objects. In all experiments,
he probe object interacts gravitationally with the three most massive
lanets. 
NRAS 00, 1 (2022) 

s  
To calculate the 〈 Y 〉 values for the synthetic systems, we integrated
he N -body equations of motion and their variational equations with
he GBS integrator (Hairer et al. 1993 ; Hairer & Wanner 1996 ) for
 10 5 yr. Such an interval co v ers � 10 4 orbital periods of outermost

lanet, which makes it possible to detect unstable motions associated
ith strongest two-body and three-body MMRs. This integration

ime is also consistent with the the typical characteristic time-scale
equired to achieve 〈 Y 〉 convergence for a stable configuration. The
BS integrator is the best choice in the case of collisional dynamics

hat is frequently expected in this setup. 

.1 Hypothetical asteroidal belts 

he results for small-mass asteroids are illustrated in Fig. 13 .
artesian coordinates in the orbital plane of the system shown in

he top panel are accompanied by plots for canonical elements of the
est particles (bottom-right panel). We gathered � 10 6 stable solutions
ith |〈 Y 〉 − 2 | < 0.007 for this case. The probe particles are marked
ith different colours, depending on their dynamical status: brown
ots are for objects involved in 1:1c MMR with the outermost planet
D 160691c; orange dots are for stable orbits between HD 160691b

nd HD 160691c, and blue dots are for the Kuiper belt-like zone
eyond the outermost planet. 
The edges of the debris disc formed in these regions are highly

symmetric. Also, their non-random distribution in the plane of the
sculating elements ( a 0 , e 0 ) is shown in the bottom-right panel
n Fig. 13 . It was constructed based on the canonical elements
etermined in the Jacobi reference frame. The use of canonical
lements is necessary to a v oid the ‘blurring’ of the distribution that
ould otherwise occur with astrocentric elements. In this diagram,
e marked the asteroids with the same colors as in the snapshot in

he orbital plane, and some of the their lowest order MMRs with
lanet HD 160691c are labelled. 
The results for the 〈 Y 〉 -model may be confronted with dynamical
aps computed in the ( a 0 , e 0 )-plane for fixed orbital phases of

he Vesta-like particles, shown in the left column in Fig. 13 . The
aps show the phase structure in three distance regions: between

he innermost pair of planet HD 160691d and HD 160691e (the top
anel), in the Main Belt zone (middle panel) and in the outer, Kuiper
elt beyond the outermost planet HD 160691c (bottom panel). The
esonant structure of the debris disks is also clear, especially in
he bottom-left map. Ho we v er, as e xpected, the Main Belt disc
tructures in the 2D dynamical maps are much more narrow than
heir representation in the 〈 Y 〉 -model, due to fixed orbital phase of
he test particles. 

.2 Earth-like planets and the habitable zone 

lthough we considered low-mass asteroids in this test, stable
egions can potentially host larger planets as well, in the Earth mass
ange. As the mass of the probing objects increases, the regions
ay decrease in size, both in the coordinate and orbital element

lanes. This is illustrated in Fig. 14 for Earth-mass objects (the left
olumn) and super-Earths (the right column), respectively. That case
e should interpret in terms of a potential location of the small
lanets rather than a representation of a physical debris disc. 
The distribution of Earth objects is very similar to the experiment

or Vesta-type asteroids, as could be predicted from the similarity
f this system to the restricted problem (with zero-mass asteroids).
or more massive super-Earth ‘asteroids’ and the inclinations of the
ystem I = 60 ◦ the stable zones shrink considerably, but the o v erall
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Figure 13. Left column: dynamical maps for a test particle (Vesta-like asteroid with the mass of 3 × 10 −7 m Jup ) in three distinct regions between the planets. 
The MEGNO 〈 Y 〉 ∼ 2 indicates a regular (long-term stable) solution marked with black/dark blue colour, 〈 Y 〉 much larger than 2, up to � 5 indicates a chaotic 
solution (yellow). The integration time of each initial condition is 10 5 yr ( � 10 4 × P 4 ). Top-right panel: Debris disks in the HD 160691 system revealed by 
� 10 6 stable orbits with |〈 Y 〉 − 2 | < 0.007 gathered in the 〈 Y 〉 -disk simulation. They are illustrated as a snapshot of astrocentric coordinates ( x , y ) at the initial 
epoch t 0 . Colours of test particles injected with random elements, a 0 ∈ [0.9, 10] au and e 0 ∈ [0, 0.6]) into the system of three outer planets, correspond to their 
dynamical status marked also in the panel with orbital elements, below. The initial positions of the planets are marked with filled circles. Grey rings illustrate 
their orbits integrated in a separate run for 0.2 Myr. Bottom-right panel: the orbital structure of hypothetical debris discs in the system, in terms of canonical 
Jacobi elements in the ( a 0 , e 0 )-plane. Some two-body, lowest order MMRs with the planets are labelled, and stable orbits in their regions are marked with 
different colours, consistent with a snapshot of these stable solutions in the abo v e panel. 
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iscs structure is still preserved. We can conclude that the 〈 Y 〉 -model
cales for several orders of magnitude of the probe masses. 

The results are therefore universal in the sense that we can predict
he locations of e.g. Earth-like planets that are below the current 
etection limits. It turns out that such small planets could be found
n the habitable zone, despite Rocinante and Quijote prevent stable 
rbits of terrestrial planets unless they are placed beyond roughly 
 au (see Fig. 14 ), or interior to 0.3–0.4 au. 
Given the luminosity of μ Arae L = 1 . 9 L 
 and the spectral

emperature T = 5820 K (Soriano & Vauclair 2010 ), the outer
imiting distance roughly correspond to the orbit of Mars in the 
olar system. Indeed, for an Earth-like planet, the inner radius of

he runaway greenhouse effect is r min = 1.31 au, the radius of
aximum greenhouse effect r max = 2.30 au, and the radius for early
ars zone r EM 

= 2.42 au (Kopparapu et al. 2014 , their habitable
one calculator). Therefore, habitable Earth-like planets could be 
ound in a small region of Lagrangian (Trojan) 1:1b orbits around
D 160691b as well on the inner edge of the Main Belt, up to the
:1c MMR gap (see the elements distribution in Fig. 14 ). 

 C O N C L U S I O N S  

he HD 160691 planetary system is one of the first detected multi-
lanet configurations with a mass-diverse planets, and it comprises of 
 warm Neptune, a Saturn-mass planet, and two massive Jupiter-mass 
bjects. The precision RV data available in public archives, spanning 
t least 1.5 outermost periods, makes it already possible to tightly
onstrain the orbits and minimal masses of the planetary companions 
o 1 σ � 0 . 02 m Jup . Unfortunately, given a low accuracy of the
ST astrometry reported in (Benedict et al. 2022 ), and insufficient
MNRAS 00, 1 (2022) 

art/stac2584_f13.eps


18 K. Go ́zdziewski 

M

Figure 14. Stable orbits in the HD 160691 system revealed by � 10 6 solutions with |〈 Y 〉 − 2 | < 0.007 gathered in the 〈 Y 〉 -disk simulation for a test planet masses 
m 0 injected into the system of three outer planets with random elements, a 0 ∈ [0.9, 10] au and e 0 ∈ [0, 0.6]). They are illustrated as a snapshot of astrocentric 
coordinates ( x , y ) at the initial epoch t 0 . Colours of the particles correspond to their dynamical status marked also in the panel with orbital elements, below. The 
initial positions of the planets are marked with filled circles. Grey rings illustrate their orbits integrated in a separate run for 0.2 Myr. The left column is for m 0 = 

0.01 m Jup (3 Earth-masses) and the right column is for m 0 = 3 × 10 −2 m Jup (10 masses of Earth). The integration time with the GBS integrator of each initial 
condition is 10 5 yr ( � 10 4 × P 4 ). Bottom panels are for the orbital structure of the stable orbits in terms of canonical Jacobi elements in the ( a 0 , e 0 )-plane. Some 
two-body, lowest order MMRs with the planets are labelled, and stable orbits in their regions are marked with different colours, consistent with a snapshot of 
these stable solutions in the top panels. 
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etection limits (estimated here independently), we restricted the
nalysis to the RV data only. 

We impro v ed kinematic (Keplerian) models reported more than
5 yr ago (Go ́zdziewski et al. 2007 ; Pepe et al. 2007 ), as well as
n the very recent paper by Benedict et al. ( 2022 ). Our Newtonian
V models of the HD 160691 system imply its long-term stable,
olar system-like orbital architecture. The planets revolve in low-
ccentricity orbits determined with significantly reduced uncertain-
ies � 0.01 w.r.t. the prior literature, closely resembling the Earth–

ars–Jupiter sequence. Other orbital elements, and particularly the
emimajor axes are bounded 0.02 au for the outermost planet, and
o just 0.001–0.002 au for remaining inner massive companions.
imiting uncertainty of the outermost semimajor axis to � 27 d
eans a qualitative improvement, compared to uncertainties of

00–1300 d reported in Go ́zdziewski et al. ( 2007 ) and Pepe et al.
 2007 ). 

Using the dynamical maps technique, we found that the nom-
nal ICs co v er re gions in the phase space within sev eral σ er-
or bars that correspond to long-term stable evolution. The di-
ect numerical integrations indicate stable orbital evolution of the
est-fitting models for at least 6.7 Gyr (i.e. the lifetime of the
tar). 
NRAS 00, 1 (2022) 
The present RV data do not make it possible to fully constrain the
ystem inclination. Ho we ver, it does not influence the stability in a
ide range between 90 ◦ and � 20 ◦. In this range, coplanar systems

emain in similarly wide and safe zones of stable motions, despite of
lanet masses enlarged a few times, in accord with the m sin I relation.
oreo v er, we found a close o v erlap of the dynamical stability with

he best-fitting models in the sense that there is clear maximum of
he posterior distribution for ln L and a steep increase of the RMS at
 � 20 ◦–30 ◦. This means that all the masses would remain certainly
elo w the bro wn dwarf mass range. It also pro v es that the analysed
V data bring information on the mutual interactions between the
ystem components. 

The meaningfully constrained orbits make it possible to globally
nvestigate the global dynamical structure of the system. The inner
air of Saturn–Jupiter-mass planets is close to the 2e:1b MMR, but
s significantly and systematically separated from this resonance.
imilarly, the outer pair is close to the 6b:1c MMR but also is
eaningfully far from it. This result may be important since it adds
 new observational evidence on a near-resonant, well-characterized
ultiple system with Jovian-mass planets. 
Multiple planetary systems, especially in the lower mass range

etected by the Kepler mission, exhibit excess of planets close to
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rst order MMR (2:1 and 3:2), with the period ratio slightly higher
han the resonant value (e.g. Petrovich et al. 2013 ; Delisle & Laskar
014 ; Ramos et al. 2017 ; Marzari 2018 , and references therein).
here is a debate in the literature about the origin of this effect. It has

ecently been shown (Marzari 2018 ) that the presence of a massive
ircumbinary disc can significantly affect the resonant behaviour of 
 pair of planets, shifting the resonant position and reducing the size
f the stability region. Dissipation of the disc may explain some 
xosystems that are close to the MMR but not trapped within it. If
uch mechanism was active in the μ Arae system, the current, near 
e:1b MMR for the inner pair could be a signature of a massive
ircumstellar disc in the past and its remnants in the form of asteroid
elts at present. In this context, the evolution of the μ Arae system
erves a particularly interesting scenario. The near-resonant pair is 
ccompanied by a more distant high-mass companion, also near 
igher order 6c:1b MMR of the outer pair, which certainly enriches 
he dynamical setup. 

The orbital architecture permits for the presence of massive 
ebris disks, indeed, as the y might surviv e between the planets.
here is especially wide region between the outer pair, spanning 

he semimajor axes range of (1.5, 5.2) au; also there is such a
astly wide stable region beyond the outermost planet, starting at 
 6.5 au and huge Trojan islands coorbital with the outermost planet.
imulations of these debris disks reveal their strongly resonant 
tructure that is preserved in a wide range of probe masses, be-
ween Vesta-like asteroids and super-Earths with � 10 Earth masses. 
e debris discs would be (obviously) strongly influenced by the 
MRs with the Jovian planets. Their short-term MMR structure 

losely resembles the Main Belt and the Kuiper Belt in the Solar
ystem. 

Prospects to detect relatively massive, super-Earth–mass objects 
n the zone around 0.3–0.5 au or in other parts of the system, where
table orbits of are possible, are uncertain but unlikely. The semi-
mplitude of their RV signals would be comparable with the intrinsic
tellar jitter variability. We did not detect significant periods in the 
esiduals of the RV models other than those identified with the known
lanets. 
Because μ Arae has a fairly large parallax ( � 65 mas), it may be

n interesting and promising target for ALMA and other instruments 
o detect dust emissions, and set additional limits on the presence of
mall planets in outer parts of the system. In addition, the detection
f debris disks, especially the outer one, can help better constrain the
nclination of the system. 

Monitoring the RV variability of the star still seems plausible, as
t may permit to characterize the system even better, once the Gaia
R4 catalogue is released. Our simulation of the IAD measurements 
ith the help of HTOF package (Brandt et al. 2021a ) reveal that the

wo outer planets will be astrometrically detectable with very high 
/N, provided the uncertainty of the IAD time series on the level of
.1 mas. Moreo v er, we hav e shown that the mutual gra vitational inter -
ctions can be detected in the RV data up to the middle of 2015. Ad-
itional precision RV observations might greatly help to break or re-
uce the m sin I de generac y, and confirm or rule out the inclination of
he system I � 20 ◦–30 ◦ indicated by our Bayesian MCMC sampling
xperiments. 

Finally, the highly hierarchical configuration of μ Arae is a 
ew test-bed for our new fast indicator REM (Panichi et al. 2017 )
hat helps to analyse the structure of the phase space in terms of
he most accurate, Newtonian representation of the data. Despite 
nalytical approximations for the motion of the innermost planet 
ay be constructed (Farago et al. 2009 ), the simple REM algorithm

ased on the canonical leap-frog scheme offers a sufficient numerical 
fficiency to derive the dynamical maps through integrating the exact 
quations of motion of the whole system. It is also fully compatible
ith more CPU demanding MEGNO technique, especially for 

ystems in regions of the the phase space which are filled with mostly
table solutions. 
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