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ABSTRACT

We analyse the transit timing variation measurements of a system of two super-Earths de-
tected as Kepler-29, in order to constrain the planets’ masses and orbital parameters. A
dynamical analysis of the best-fitting configurations constrains the masses to be ~6 and ~5
Earth masses for the inner and the outer planets, respectively. The analysis also reveals that
the system is likely locked in the 9:7 mean motion resonance. However, a variety of orbital
architectures regarding eccentricities and the relative orientation of orbits is permitted by the
observations as well as by stability constraints. We attempt to find configurations preferred
by the planet formation scenarios as an additional, physical constraint. We show that con-
figurations with low eccentricities and anti-aligned apsidal lines of the orbits are a natural
and most likely outcome of the convergent migration. However, we show that librations of the
critical angles are not necessary for the Kepler-29 system to be dynamically resonant, and such
configurations may be formed on the way of migration as well. We argue, on the other hand,
that aligned configurations with e 2 0.03 may be not consistent with the migration scenario.

Key words: methods: data analysis — planets and satellites: dynamical evolution and stability —

stars: individual: Kepler-29 —planetary systems.

1 INTRODUCTION

The Kepler mission has lead to the discovery of a few hundred mul-
tiple planetary systems with super-Earth planets. Some of those sys-
tems are very compact and exhibit orbital period ratios close to small
rational numbers. This may indicate their proximity to low-order
mean motion resonances (MMRs; e.g. Lee, Fabrycky & Lin 2013).
This is not yet a fully resolved issue, since most of the Kepler sys-
tems are not sufficiently characterized, regarding both the planet’s
masses and orbital architectures. Dynamical modelling of transit
timing variation (TTV) measurements (Agol et al. 2005) or the
photodynamical method (Carter et al. 2011), which account for the
mutual N-body interactions, are common and usually the only ap-
proaches making it possible to model multiple systems in the Kepler
sample (Mullally et al. 2015; Rowe et al. 2015; Holczer et al. 2016).
A further difficulty is a relatively narrow time-window of observa-
tions and low signal-to-noise ratio that typically lead to weakly con-
strained eccentricities and longitudes of pericentre. Therefore, defi-
nite conclusions about orbital architectures of such systems are hard
to derive unless a priori constraints are imposed, like requirements of
dynamical stability and evolution consistent with the planetary mi-
gration. Nevertheless, the TTV method is the major technique mak-
ing it possible to determine the dynamical masses, if spectroscopic
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measurements could not be made for faint or/and chromospherically
active stars.

In this paper, we aim to characterize the dynamical architecture of
Kepler-29 (KOI-738) planetary system detected by Fabrycky et al.
(2012). We use the TTV measurements spanning 17 quarters of
Kepler long-cadence photometric light curves (Rowe et al. 2015).
Kepler-29 is composed of two super-Earth planets with dynamical
masses of 4.69 and 4.16 Earth masses, respectively (Jontof-Hutter
etal. 2016). Their stability analysis has been restricted to a relatively
short-term direct N-body integration for a few million years. We
focus rather on qualitative dynamical analysis of this resonant or
near-resonant system and consider the planetary migration as a
possible formation scenario.

The paper is structured as follows. Section 2 is devoted to the
dynamical model of a co-planar Kepler-29 system constrained by
the TTV measurements in Rowe et al. (2015). We aim to obtain a
comprehensive view of the parameter space with two independent
optimization methods: the Markov Chain Monte Carlo (MCMC)
sampling as well as with genetic and evolutionary algorithms. We
show the results of the stability analysis of plausible configurations
with the long-term direct numerical integrations and with the fast
indicator technique. We found that the planets may be in 9:7 MMR,
although its presence and behaviour of critical angles, as well as the
stability depend on a priori set eccentricity distribution. Different
geometric configurations with librating or rotating critical angles
are permitted by both the observational and dynamical constraints.
Therefore, in Section 3 we attempt to construct a global, analytic
approximation of the system close to the 9:7 MMR, and to verify
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whether or not the best-fitting models may be formed on the way of
planetary migration (Section 4). Conclusions are given in the last
section.

2 THE TTV DATA MODEL AND
OPTIMIZATION

The mathematical TTV model in this paper is essentially the same as
in our previous work devoted to the Kepler-60 system (Gozdziewski
etal. 2016). The TTV data set D for Kepler-29 consists of 187 mea-
surements spanning quarters Q1-Q17 (=~ 1450 d), with reported
mean uncertainties (o 1") >~ 0.009 d and {05 7V) ~ 0.011 d, for
the inner and outer planet, respectively (Rowe et al. 2015). The
uncertainties are significant, given the full range of the TTV mea-
surements spans ~0.12 and ~0.15 d, respectively. Such a TTV vari-
ability is relatively clear as compared to other two-planet systems
in the Kepler sample published in the Rowe et al. (2015) catalogue.
Recently, Holczer et al. (2016) performed a new re-analysis of the
Kepler data and they report 162 measurements for Kepler-29 that
cover both the long-cadence and, when available, short-cadence
Kepler light curves. While we performed the TTV analysis of this
data set after it has been published, we did not make an extensive
use of the results. Our orbital models derived on the basis of the
Rowe et al. (2015) catalogue fit the TTV time series in Holczer et al.
(2016) as well. We have got qualitatively the same distributions of
the best-fitting parameters.

Given a relatively low signal-to-noise TTV data, the inclinations
I}, » and the nodal longitudes €2, , cannot be constrained. Moreover,
since we focus on a hypothesis that the Kepler-29 system could
have originated through the convergent planetary migration, we
assume that it is coplanar or close to coplanar, and we fix I; »
= 90° and ©; , = 0°. As we want to cover possibly wide range
of eccentricities e; , and for e; , ~ 0, the longitudes of pericentre
@ 1, are weakly constrained, we introduce non-singular, osculating,
astrocentric elements {P;, x;, y;, T;} instead of {a;, ¢;, w;, M,},
i=1,2:

3
Pi =27 i

P; t
A g B,
K2 (mo + m;) ot o WM

and x; = e;cosw;, y; = e¢;sinw;, where k is the Gauss gravita-
tional constant, Mf»t) is the mean anomaly at the epoch of the first
transit 7;, and M,, P; and a; are for the mean anomaly, the or-
bital period and semimajor axis at the osculating epoch ¢, for each
planet, respectively. We computed the transits moments with the
TTVFAST package (Deck et al. 2014) and with our own codes for an
independent check.

The least-squares fit to the TTV data with their raw uncertainty
results in solutions having large x2 ~ 2. The scatter of residuals
is roughly symmetric, however its magnitude is significant with
respect to the TTV signal itself. Here, we assume that the TTV
uncertainties are Gaussian and independent, which may be justi-
fied since a posteriori Lomb-Scargle periodograms of the residuals
of best-fitting models did not show apparent, isolated frequencies.
Therefore, the large x> might be explained by underestimated un-
certainties. To correct for this factor, we optimized the maximum
likelihood function £:

1 o(D) — C&)I7,
log L(DI§) = =3 > (oD = €L,

it Oi
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it
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where (O-C); , is the (O-C) deviation of the observed rth transit
moment of an ith planet from its N-body ephemeris determined
through a model parameters vector &, and N is the number of TTV
measurements encoded as data set D. This more general form of
L makes it possible to determine the free parameter o that scales
the TTV uncertainties o , in quadrature, such that 67, — o7, + o
results in x2 ~ 1.

Because values of £ are non-intuitive for comparing solu-
tions, therefore we define a quasi-rms measure of the fits quality,
log L = 10g 0.2420—log L/ N, expressed in days. For statistically
optimal solutions x2/N ~ 1, therefore L ~ (o) is a scatter of
measurements around the best-fitting model (e.g. Baluev 2009). We
observed that in fact L remains close to the usual rms goodness-of-fit
measure.

A quasi-global optimization of the dynamical model relies
on investigating the space of 11 free parameters &, which are
the osculating elements (P;, T;, x;, y;), dynamical masses m;, i
= 1, 2, as well as ‘the error floor’ o, common for all TTV
measurements.

The MCMC technique is widely used by the photometric com-
munity to determine the posterior probability distribution P(&|D) of
model parameters &, given the data set D: P(§|D) ox P(§)P(D|é),
where P(§) is the prior, and the sampling data distribution
P(D|&) = log L(D|&). For most of the parameters, priors have been
set as uniform (or uniform improper) through imposing parameters
ranges available for the exploration, i.e. P, > 0d, 7T; > 0d, m; €
[0.0001, 30]Mg, o > 0 d.

Choosing priors for (x, y)-elements is a more subtle matter.
We already know (e.g. Hadden & Lithwick 2014; Jontof-Hutter
et al. 2016) that these parameters are unconstrained and biased
towards large eccentricities, contrary to the physical, a priori deter-
mined quasi-circular architecture of the system. Therefore, besides
uniform priors for £ = xy, x,, y; and y,, i.e. £ € (— 0.48, 0.48), we
also examined Gaussian priors imposed on these parameters, which
are determined through P(§) = exp(—(§ — §)*/0), with the zero
mean value &, and a few variances o = 0.05, 0.1, 0.25, 0.33,
respectively. This approach is similar to that one used by Jontof-
Hutter et al. (2016), who argue that the eccentricity distribution for
multiple planetary systems is not uniform (Moorhead et al. 2011;
Kane et al. 2012; Hadden & Lithwick 2014; Plavchan, Bilinski &
Currie 2014; Van Eylen & Albrecht 2015).

In order to perform the MCMC analysis, we prepared PYTHON
interfaces to model functions written in FORTRAN 90 and we
used excellent EMCEE package of the affine-invariant ensemble sam-
pler Goodman & Weare (2010), kindly provided by Foreman-
Mackey et al. (2013). As a second approach to CPU-effective
exploration of weakly constrained parameters space, we max-
imized the log £ function with genetic and evolutionary algo-
rithms (GEA from hereafter; Charbonneau 1995; Rucinski, 1zzo
& Biscani 2010). We set similar parameter bounds as in the
MCMC experiments. The GEA parameter surveys are very useful
to select starting solutions for the MCMC analysis, which makes
the sampling of presumably multimodal distributions more CPU
efficient.

In order to characterize the dynamical stability of the solu-
tions, we use the fast indicator technique, so called Mean Ex-
ponential Growth factor of Nearby Orbits (MEGNO or (Y);
Cincotta, Giordano & Simé 2003), an incarnation of the Max-
imal Lyapunov Characteristic Exponent (mLCE). Since the pe-
riod ratio derived from the transit data indicates a system close
to the 9:7 MMR, we also investigate critical angles of this
resonance:
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Figure 1. Solutions with L < 0.0145 d (grey dots) derived through optimization of the maximum likelihood function with the GEA. Blue dots are for
configurations that result in MEGNO (Y) ~ 2 integrated for 64 kyr, indicating regular solutions. Stable, high-eccentricity solutions are visible in small, isolated

‘clumps’, outside a region of Az = 0.

é1 = Th — 9% + 2o,
$> = TA1 — 9hs + 205,
¢3 = 7)\1 — 9)\.2 + w) + w>. (2)

We also used the refined Fourier frequency analysis (Laskar 1993;
Sidlichovsky & Nesvorny 1996) which makes it possible to de-
termine fundamental frequencies of the system. We focus on
the 9:7 MMR, hence the proper mean motions are determined
through the modified Fourier transform (FMFT) of the time series
{ai(t)exp [iri()]}, where a;(f) and A,(¢) are the osculating semimajor
axis and the mean longitude, respectively. These canonical astro-
centric elements are defined as geometrical elements inferred from
the Poincaré coordinates (e.g. Morbidelli 2002), sometimes called
the democratic heliocentric coordinates. We use the canonical el-
ements only for this analysis internally in the code, while in the
fitting process and throughout the paper, the initial conditions are
parametrized through the usual, two-body astrocentric osculating
Keplerian elements.

2.1 The best-fitting configurations

We first performed an extensive search with the GEA, collecting sets
of ~10° solutions in each multi-CPU run. We did not impose any
prior information on the model parameters in this survey; however,
we should not expect that the problem of unconstrained eccentric-
ities could be avoided. Indeed, we found a continuum of models
with L < Ly, = 0.0149 d, well-determined orbital periods P; and
transit epochs T}, i = 1, 2. The error floor o¢ ~ 0.01 d is roughly
uniform for all these solutions. The (x;, y;)-parameters transformed
to the (e;, w;)-elements (i = 1, 2) form a pin-like structure in the
(e1, Aw)- and (e; + e,, Aw)-planes, as shown in Fig. 1. The two
panels look similar, because e; =~ e, (see below). When the ec-
centricities reach moderate values up to ~0.05, the TTV models
are found close to Aw = 0-axis. A similar effect has been ob-
served for other Kepler systems (Jontof-Hutter et al. 2016). It is
not clear whether the apsidal alignment could be physical in the
presence of planetary migration. As shown in Xiang-Gruess & Pa-
paloizou (2015), aligned configurations for second-order MMRs
can be formed through migration, however that happens for the ec-
centricities significantly different one from another, not for ¢; =~
e, like for Kepler-29. Aligned configurations studied in the cited
paper remind systems in 2:1 MMR that move, during the migra-
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tion, along a branch of stable periodic configuration and eventually
change the libration centre of Az from 7 to O (e.g. Ferraz-Mello,
Beaugé & Michtchenko 2003). When e; ~ e, much more likely,
naturally emerging are resonant configurations with antialigned ap-
sides, which are also present in Fig. 1 for small eccentricities.

Fig. 1 also illustrates the results of the stability analysis for the
models gathered. Due to relatively large masses of ~6 Earth masses,
and close orbits, significant mutual perturbations could be possi-
ble. Therefore, for all solutions with L < L;;, we computed their
MEGNO signatures for 64 kyr (~1.8 x 10° outermost orbits). Such
an interval well covers the characteristic short-term dynamical time-
scale associated with the 9:7 MMR. In the case of the Kepler-29,
dynamically stable models may be found in similarly wide range
of the parameter plane. Curiously, stable solutions that fit the TTV
data exist for e; , as large as 0.3-0.4. Besides the pin-like struc-
ture, we also found isolated islands of high-eccentricity solutions
beyond the Az = 0 axis. These models could be rather associated
with Az librating around 7.

Therefore, even if the stability constraints are considered, we
actually cannot choose a ‘proper’ or ‘best-fitting’ configuration of
the system. More tight constraints are required. At the first step, such
constraints may be imposed by a statistical eccentricity distribution
expected for compact Kepler systems.

We preformed MCMC experiments to account for the physical
limits of (x, y) elements. The results are illustrated in Fig. 2. It shows
one- and two-dimensional projections of the posterior probability
distribution for Gaussian prior set to (x, y) with zero mean and the
variance equal to 0.1. Computations were performed in multi-CPU
environment, making it possible to evaluate as much as 1024 000
iterations to avoid the autocorrelation effect. Each run composed of
256 eMcek ‘walkers’ initiated in a small ball around low-L solutions
found in the GEA search. The posterior is unimodal and centred
close to (x, y) >~ 0 with masses ~6 Mg and ~5 Mg for the inner
and outer planet, respectively. The posterior distribution does not
change its character, i.e. relatively well-determined peaks when the
(x, y)-prior has the variance set to 0.05, 0.1, 0.25 and 0.33, yet
the masses are strongly correlated. If the (x, y)-priors are uniform,
masses and (x, y)-elements are not constrained.

For all (x, y) Gaussian priors, we found strong linear correlations
between pairs of (x;, x;) and (y;, ¥2). These linear correlations
could mean a tight alignment of apsidal lines which is a common
dynamical feature of the low-order MMRs. This is likely a general
effect discussed by Jontof-Hutter et al. (2016) for the first-order
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Figure 2. One- and two-dimensional projections of the posterior probability distribution for all free parameters of the TTV model. The MCMC chain length
is equivalent to 1024 000 iterations initiated with 256 different instances in a small ball centred at the best-fitting model found with the GEA. The (x;, 2, y1,2)
prior is Gaussian with the zero mean and the variance equal to 0.10. Parameters 7; and P; are expressed in days, masses m; are expressed in Earth masses
(i =1, 2), and the uncertainty correction term o't is given in minutes. Indices 1 and 2 are for the inner and outer planet, respectively. Contours are for the 16th,
50th and 84th percentile of samples in the posterior distribution. We removed about 10 per cent initial, burn-out samples.

MMRs. It may be explained by the evolution of eccentricity vectors
[eicos @ ;, e;sinw;], which are not constrained individually, but
their components are tightly correlated.

The orbital period ratio in the best-fitting solutions is very close
to 9/7, indicating a possible MMR. We searched for signatures
of the 9:7 MMR by computing amplitudes of the critical angles
of solutions sampled in the MCMC experiments. When a candi-
date solution showed L < 0.0149 d, we numerically integrated the
N-body equations of motion, and the full amplitudes of all critical
angles have been determined for 60 yr (~2000P,). The amplitudes
are expressed through

Omin = min(max sin ¢ — min sin ¢», max cos ¢ — min cos ¢),

where ¢ is for any of the three critical arguments of the 9:7 MMR,
¢:, i =1, 2,3 (equation 2).

The results are illustrated in Fig. 3 for three planes of orbital pa-
rameters selected from samples with L < 0.0149 d (grey dots). The
grey area is filled, as guaranteed by the MCMC sampling, hence we
may be confident that the search covers all the relevant parameter
space. Solutions with 0,;, < 1.53 (i.e. with full amplitude ~1.53
of cos or sin) are marked with blue filled circles. This experi-
ment shows that solutions with antialigned apsides are preferred
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Figure 3. MCMC solutions with L < 0.0149 d (grey filled dots) and with
at least one critical argument ¢;, j = 1, 2, 3 librating (blue filled dots). The
Gaussian prior for (x;, y;, i = 1, 2) with the zero mean value and the variance
equal to 0.1 has been set.

for small eccentricities ~ 0.01, while models with librating critical
angles and aligned apsides are found mostly for moderate and large
eccentricities.

Curiously, the distribution of models in the (e;, e;)-plane forms
a strip having a sharp ‘cut-off” at small eccentricities region (e; +
e, ~ 0.01). This effect could be explained by measurable, mutual
interactions of the planets. Since the total angular momentum must
be conserved, it implies eccentricities variations in antiphase.

2.2 The resonant character of the system

We computed 2-dim dynamical maps in the neighbourhood of
two representative best-fitting solutions to visualize the dynami-
cal structure of the 9:7 MMR. First of these solutions is the result
of the MCMC sampling for the variance of x; », y; » set to 0.1. Its

MNRAS 465, 2366-2380 (2017)

Table 1. Orbital parameters of a representative TTV model of the Kepler-
29 system. The osculating epoch is 7=KBJD+64.0 d. The configuration is
coplanar with inclinations / = 90° and nodal longitudes €2 = 0°. Mass of
the star is l.OMQ (Rowe et al. 2015). Elements (x, x3) and (y;, y2) are
strongly correlated pairwise (see Fig. 2).

Planet Kepler-29 b Kepler-29 ¢
mp (M) SRARYS 49t
P(d) 10.33 585700003 13.292 927000038
X = ecos @ 0.0046 + 0.062 —0.009 £ 0.05
y=esinw 0.0154 + 0.062 0.008 =+ 0.05
T(d) 72.4200 + 0.0041 65.1830 =+ 0.0048
a(au) 0.092 8613 0.109 8205

e 0.0160 0.01169

o (deg) 73.44 139.94

M (deg) —96.18 96.99

ot (d) 0.009 + 0.001

L(d) 0.0145

parameters are given in Table 1 and the synthetic TTV signals are
presented in Fig. 4. The top row of Fig. 5 shows dynamical maps
in the (a,, e;)-plane for this model. All other orbital elements are
kept at their best-fitting values. For each initial condition at the grid,
the N-body equations of motion were integrated up to 36 kyr. This
corresponds to ~10° x P,, sufficient to detect short-term chaotic
motions for the MMRs instability time-scale (e.g. GoZdziewski &
Migaszewski 2014). As the dynamical maps show, the observa-
tional uncertainties of a; and @, ~ 10~ au are much smaller than
the width of the 9:7 MMR, see Fig. 5. The best-fitting solution is
found, somehow ironically, just in a narrow unstable structure which
may be identified with the separatrix. The 9:7 MMR structure may
be even better visible in the right-hand panel of Fig. 5 which is for
the frequency map of the system and shows deviations of the ratio
of mean motions f>/fi = ny/n; (fundamental frequencies) from the
exact 9/7 value. The 9:7 MMR spans the middle part of the map,
depicted as wide grey/yellow strip of regular motions limited by
vertical separatrices. In the middle of this strip, a boomerang-like
structure appears with n, /n; deviations from the 9/7 ratio as small as
1079 and sharp borders coinciding with curved, narrow separatrices
identified in the MEGNO map.

We found that the critical angles ¢, » 3 are not fully adequate
signatures of the 9:7 MMR since they may librate with large full
amplitudes reaching 27, even in the boomerang-like region charac-
terized with almost exact 9/7 ratio of the orbital periods.

Yet a highly ordered evolution of (Aw, ¢,) during first 36 kyr
(~10° outermost periods) is illustrated in the top row of Fig. 6
for three initial conditions selected at maps in Fig. 5, with the
same elements as the best-fitting model, besides changed e;. The
left-hand panel is for e; = 0.006 (below the lower separatrix of
the boomerang-like structure), e; = 0.019 (close to the nominal
solution, between the separatrices) and e; = 0.026 (above the upper
separatrix). In all these cases, a clear resonant behaviour of the
system is apparent which we understand here as a strong correlation
of the critical angles rather than low-amplitude librations of these
critical arguments. The primary indication of the presence of the
resonance are the dynamical maps, Fig. 5 and the particular, vertical
structure, which is common for MMRSs in the (a, e)-plane.

There is also a clear difference between evolution of the crit-
ical angles inside and outside the 9:7 MMR structure. To show
this, we integrated two configurations with a¢; = 0.092 80 au and
a; = 0.092 98 au (the left- and the right-hand panels of the bottom
row of Fig. 6, respectively) that are located outside the resonance.
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Figure 4. Synthetic TTVs of best-fitting low-eccentricity models for Kepler-29 (Table 1) overplotted on the TTV measurements (red lines are shown merely
to guide the reader’s eye). The left-hand column presents the fitting results for the data set from Rowe et al. (2015), while the right-hand column is for an
example best-fitting model to the data set from Holczer et al. (2016), shown for a reference.

In contrast to highly correlated behaviour of the angles inside the
vertical structure, illustrated in the top row of Fig. 6, in both these
cases the evolution of the angles is not ordered in the sense explained
above. Angle ¢, can be equal to O or ¥ when Aw equals 0. The
middle panel in the bottom row illustrates the resonant behaviour,
however the initial a; = 0.09293 au, so the system is very close
to the separatrix between resonant and non-resonant regions. Al-
though the system evolves almost in a whole (A@, ¢;)-plane, simi-
larly to the top row of Fig. 6, the angles are synchronized and when
Aw =0 orm, ¢; cannot be 0.

We also found clear semimajor axes oscillations, expected for
systems in MMR, whose amplitude is a few times larger in the
MMR region, when compared to solutions beyond the MMR struc-
ture (not shown here). Moreover, the curved thin chaotic borders
encompassing the boomerang-like structure inside the MMR could
be identified with separatrices of secondary resonances of the fre-
quency of oscillation of the semimajor axes (the resonant frequency)
with the frequency of librations of the secular angle Az (Morbidelli
& Moons 1993; Michtchenko & Ferraz-Mello 2001).

The bottom row in Fig. 5 is for the dynamical maps computed
for MCMC derived models with the eccentricity priors set to 0.25.
This prior leads to systematically larger osculating eccentricities,
however the respective posterior distributions look similarly as in
Fig. 2. Curiously, the best-fitting solution remains ‘glued’ to the
unstable separatrix of the boomerang-like structure.

A problem of constraining the dynamical model of Kepler-29
is finally illustrated in Fig. 7 which shows a MEGNO map for
osculating elements from a small island of stable solutions around
(e1 ~0.23, Awr >~ —135°), see Fig. 1. Each point in this (¥) map has
been integrated for 64 kyr, which guarantees the Lagrange stability
for 10-100 times longer interval, hence for ~10 Myr. The tested
initial condition is found in an island in a kind of archipelago with

eccentricities as large as 0.7. Fig. 1 displays a few isolated models
of this type with large eccentricities.

3 PERIODIC ORBITS

In the previous sections, we could not determine any unique model
of the Kepler-29 system with both the observational and dynami-
cal constraints. Therefore, we aim to impose additional constraints
through the most likely convergent planetary migration of the sys-
tem in the past. As it has been shown (Beaugé, Ferraz-Mello &
Michtchenko 2003; Beaugé, Michtchenko & Ferraz-Mello 2006;
Hadjidemetriou 2006; Migaszewski 2015), systems of two planets
that undergo convergent migration evolve along families of pe-
riodic orbits. Although the cited papers are devoted to first-order
MMRs, one could expect that also for a second-order MMR, like 9:7,
periodic orbits play an important role. Therefore, we seek for fam-
ilies of periodic orbits of 9:7 MMR and show where the configura-
tions that fit the TTV data locate with respect to them.

3.1 The representative plane of initial conditions

In order to address those issues, we apply the so called represen-
tative (symmetric) plane of initial conditions ¥ (e.g. Beaugé &
Michtchenko 2003) which makes it possible to illustrate global,
qualitative features of the multidimensional and multiparameter
planetary systems.

Before introducing the X-plane, we recall some essential facts
about resonant configurations of two planets in coplanar orbits.
Their dynamics may be reduced through the averaging over the
fast angles to a two-degree-of-freedom Hamiltonian. This Hamilto-
nian possesses two first integrals, i.e. the total angular momentum
C = G + G, and the so called spacing parameter

MNRAS 465, 2366-2380 (2017)
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Figure 5. Dynamical maps for the best-fitting TTV models from the MCMC in a region of small eccentricities obtained with Gaussian priors imposed on
(x, yi) parameters with variances of 0.10 ( top row, osculating elements of this model at 7o = KBJD + 64 d are displayed in Table 1) and 0.25 (bottom row),
respectively. Left-hand column: dynamical maps in terms of the MEGNO indicator, (Y) ~ 2 indicates a regular (long-term stable) solution marked with blue
colour, (¥) much larger than 2, up to 2 32 indicates a chaotic solution (orange/red). Integrations done for 36 kyr (roughly 1.2 x 10°P5). Right-hand column:
deviation of the ratio of fundamental frequencies (mean motions) with respect to the nominal value for the 9:7 MMR, computed for interval spanning 102"

time steps of 0.5 d (=~ 4 x 10*P,).

2

i

K=@p+q@L +pLy, where L; = 8 Juia;, Gi=Li /1 —¢
Bi=(1/my+ 1/m;)~" and u; = k*(my + m;), i = 1, 2 (Michtchenko
& Ferraz-Mello 2001; Beaugé & Michtchenko 2003).

The averaged Hamiltonian can be expressed through H =
H(I, I, 01, 05, C, K), where the canonical variables are I; = L;
—Giando; = (1 + s)A, — sA; — @, with s = p/q. It can be
shown that 9 H/do; = 0 for critical values of (¢, 02) = {(0, 0),
0, 7), (£m/2,+7/2), (£ /2, Fr/2)}. Therefore, the equilibria
of the averaged system, that are periodic configurations of the full
three-body problem, do exist for these four pairs of angles. (Note
that changing signs for both the angles simultaneously does not lead
to any change in the Hamiltonian.) Such configurations are called
apsidal corotation resonances (ACR). Here, we consider symmetric
ACR only.

The canonical averaging can be done numerically or analytically.
The explicit form of the averaged Hamiltonian is

Kmyms —

ROV Y .

2ay 2a, a

H=

where the disturbing function reads as follows:

1 2 ay )\| —)\2
—— | %2 49, 0= : 3)
2t Jo o lry —r2l q
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=

This integral can be evaluated numerically (Michtchenko, Beaugé &
Ferraz-Mello 2006) or analytically. For this operation, the function
under the integral must be expanded in power series with respect
to the small parameters, like eccentricities or semimajor axes ratio
(e.g. Beaugé & Michtchenko 2003). Here, R = Rsec + Rres is a
sum of the secular Ry and resonant R, terms, following a recipe
in Murray & Dermott (1999). We selected terms up to the fourth
power in the eccentricities, which provides a very good approxi-
mation for eccentricities < 0.1, and with no terms related to the
inclinations and nodal longitudes, since we assume a coplanar con-
figuration. The explicit form of the averaged Hamiltonian is given
in Appendix A.

The representative (or characteristic) plane of initial conditions X
is a plane of eccentricities. A point in this plane (e;, e;) determines
semimajor axes a;, a, through the first integrals C and K. The initial
condition of a given system contains also angles o and o, chosen
from the critical setof (o1, 02) = {(0,0), (0, 7), (£ 7 /2,7 /2),(+
7 /2, Fr /2)}. Each orbital configuration with angles (o1, 0,) that
circulate or librate around pairs of critical values given above must
intersect this plane (Michtchenko & Ferraz-Mello 2001). Therefore,
in order to study the dynamics of such systems globally, it is suffi-
cient to consider the four sets of initial resonant angles (o1, 02) in
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Figure 6. Evolution of critical angles (Aw, ¢1) computed for six initial conditions from a dynamical map in Fig. 5. Integrations interval is 36 kyr. See the

text for details.
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Figure 7. The MEGNO dynamical map for a TTV model in a region of
large eccentricities (see Fig. 1) out of A = 0, computed for 64 kyr (~2.5
x 10°P5). The MEGNO indicator, (Y) ~ 2 indicates a regular (long-term
stable) solution marked with blue colour, (¥) much larger than 2, up to 2
256 indicates a chaotic solution (light blue/red/yellow).

the ¥-plane. However, the X-plane defined in this way is represen-
tative only for symmetric configurations, for which Aw = o, —
o equals 0 or &. There could, in principle, also exist asymmetric
configurations with different libration centres (Beaugé et al. 2003).
Since the majority of the best-fitting configurations of the Kepler-
29 system are symmetric (apart from, possibly, a few islands with
large eccentricities, Fig. 1), we limit our analysis to the symmetric
configurations only.

Furthermore, instead of o |, 0, we choose their combinations,
the secular angle Az and one of the critical arguments of the 9:7

MMR, ¢, = —2 o, which are more convenient for an interpretation
of their evolution. The representative angles at the X-plane are then
0, 0), (0, m), (7, 0) and (r, ), and the X-plane coordinates can
be defined as (e, cos Aw, e;cos @), where both cosines are equal
to+1orto —1.

Although the ¥-plane has been defined for the averaged Hamil-
tonian with two degrees of freedom, we can use the same concept
also for the full three-body, non-averaged system. It is convenient
to show orbital models that fit the observations with respect to the
periodic orbits represented as equilibria of the averaged system.

3.2 TTV-constrained models in the X-plane

We narrowed the set of dynamically stable initial conditions, as
illustrated in Fig. 3, by L < 0.0145 d. To map this set on the
Y -plane, we integrated the N-body equations of motion forward for
10° yr. Each time when € = ||sin A || + ||sin ¢ || < 0.02 (expressed
in radians; for numerical reasons of limited integration time, we
chose a small limit of € = 0.02 for the intersection of the X-plane),
osculating elements were transformed to coordinates at the X-plane
and presented in the left-hand panel of Fig. 8. Usually, each initial
configuration evolving in time results in more than one point at this
plane. For the reduced system with two degrees of freedom one
obtains: (i) one point at the X-plane if the system is in a stable
equilibrium; (ii) two points if it is a stable periodic configuration
of the reduced system (fixed point at the Poincaré cross-section);
(iii) four points if the reduced system evolves along quasi-periodic
orbit; (iv) a continuum of points for chaotic evolution. The full (non-
averaged) system intersects the ¥ plane in four groups of points if
its reduced counterpart intersects the plane in four points.

As Fig. 8 shows, stable models that fit the TTV data form a strip
at the X-plane along a line originating from (0, 0) and directed
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Figure 8. Panel (a): the best-fitting solutions from the TTV analysis (Figs 1 and 3) projected at the representative plane (black points). We consider a given
configuration as crossing the plane if Az and ¢; differ from the nominal values of O or 7 by less than one degree. Green and red curves denote families
of stable and unstable periodic configurations of the N-body system, respectively. Grey symbols denote configurations for which the closest encounter of the
planets in Keplerian orbits is smaller than 3 Hill radii (*0.005 au). Panel (b): chosen configurations (whose parameters are listed in Table 2) projected at the
representative plane in the same manner as for the whole statistics of systems presented in panel (a). Each configuration is plotted in different colour and
labelled. Only bottom half of the X-plane is shown. The grey filled area shows qualitatively the black strip of points shown in panel (a).

towards higher eccentricities in the quarter of the plane with A =
0 and ¢ = . There are points in the (Aw, ¢,) = (7, w)-quarter as
well, but no configurations intersect the upper half of the X-plane
(¢1=0).

The second critical component of Fig. 8 is a representation of
families of the periodic orbits. Green and red solid curves show
families of stable and unstable equilibria of the reduced system
(periodic configurations of the full system), respectively. The pe-
riodic system returns to its initial state after a certain period
P. For the periodic orbits in the 9:7 MMR, it covers nine revo-
lutions of the inner planet, and seven revolutions of the outer planet.
Then the planets starting for instance from their pericentres will
be back in the pericentres after the period P. Also orbital elements
p = (a1, az, ey, €2, M, M5, Aw) will retain their initial values.
Angles @ and @, will change, since the system precesses as a
whole. For a given point (e}, e;), we integrate the equations of mo-
tion and evaluate § = ||p(t = T) — p(t = 0)||. We search for such
(e1, e2) (for a given C, K) that provides § ~~ 0. In order to check the
stability of a given periodic configuration, we integrate the system
for ~103 revolutions. A stable periodic configuration is preserved,
while for unstable one, sooner or later the system evolves into dif-
ferent regions of the phase space.

Tracks of the periodic orbits in the X-plane correspond to the
equilibria of the averaged system. They may be found through
solving the equations

0H/0L, =0, i=1,2,

since the partial derivatives over o; are zero at the whole X-plane.
The stability of equilibria of two-degree-of-freedom Hamiltonian
systems can be verified through solving the eigenvalue problem for
the linearized equations of motion. One can also check if a given
point is an extremum of H for fixed C and K. We verified that the
branches of periodic orbits of the full N-body equations of motion
precisely coincide with the equilibria of the averaged system in the
region of the X-plane we will be interested in. This is valid for
the averaging done analytically and numerically. However, the ana-
lytic averaging provides reliable results only for non-crossing orbits
(crossing orbits are shown with grey dots in Fig. 8a). The numeri-
cally averaged Hamiltonian can be used to describe the dynamics
even for crossing orbits, provided the perturbation to the Keplerian
motions is sufficiently small.

MNRAS 465, 2366-2380 (2017)

Apparently, the best-fitting solutions appear along a family of
unstable equilibria. We found this result somehow unexpected from
the point of view of the formation of the system through the migra-
tion. Unstable periodic orbits in the proximity of the observationally
constrained configurations may be also a factor provoking dynam-
ical instability of the system. Although aligned configurations are,
in general, not impossible to form within the migration formation
scenario (e.g. Beaugé et al. 2003; Ferraz-Mello et al. 2003), the
aligned configurations studied in the cited papers are related to the
branch of stable equilibria. As shown in the previous section, geo-
metrical parameters of the system like eccentricities and pericentre
longitudes are not well constrained due to low signal-to-noise ra-
tio, narrow observational window and features of the TTV method.
This permits us to look for solutions fulfilling also the migration
constraints.

As Migaszewski (2015) has demonstrated, two-planet systems
that undergo convergent migration end up in exact periodic con-
figurations. Nevertheless, that conclusion referred to the first-order
resonances and might not be fully applicable to the second-order
MMRs. We will discuss this further in this paper. After inspecting
the O-C diagrams of Kepler-29 system (see Fig. 4), one can con-
clude that it cannot be related to exactly periodic configurations.
In such a case, there would be no secular TTV signal of a period
longer than the resonant period of ~ 91 d. However, such a signal
of a few-year period is clearly visible in the data. Therefore, the real
Kepler-29 cannot be a strictly periodic configuration. Nevertheless,
we show further that the migration is still very likely a way the
system has been formed.

3.3 Particular solutions in the X-plane

The right-hand panel of Fig. 8 illustrates models selected from the
set of solutions that well reproduce the observations. Those six mod-
els (Table 2) were chosen as qualitative representatives for all the
statistics of the best-fitting models. Model I (red points) intersects
the X-plane very close to the branch of stable equilibria and all four
groups of points where the system intersects the X-plane lie in the
(Aw, ¢1) = (7, ) quarter. Model III (blue points) lies further from
the stable branch than Model 1, and its phase trajectory intersects
both quarters with ¢; = w. Model II (green points) is an interme-
diate configuration between Models I and III. Its phase trajectory
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Table 2. Parameters of six selected models that fit the TTV measurements
and exhibit different qualitative orbital behaviour (see the text for details).
The osculating Keplerian elements are given at the epoch of 7y = BJKD +
64.0 d. The system is coplanar with / = 90° and 2 = 0°. Mass of the parent
staris 1 M.

Model/pl  m(Mg) a (au) e w (deg) M (deg)
1/b 7.5173 0.0928595  0.00542 18.30 —40.97
1/c 6.5125 0.1098237  0.00809  —148.75  —334.13
1I/b 6.2177 0.0928608  0.00629 0.15 —22.62
1l/c 5.4607 0.1098212  0.00891  —138.86  —343.92
11/b 7.5940 0.0928594  0.00758 58.44 —81.28
1Ml/c 6.6879 0.1098237  0.00776 179.74 57.30
1V/b 7.2520 0.0928609  0.01068 9.75 -31.75
IV/c 6.0265 0.109 8228 0.004 72 —117.62 —4.75
V/b 5.1439 0.0928622  0.01489 84.22 —107.33
Vic 4.4826 0.109 8190 0.01388 149.42 87.16
VI/b 5.9161 0.0928578  0.01790 155.65 —181.05
Vi/c 6.1775 0.109 8202 0.027 34 177.86 56.85

almost ‘touches’ the quarter with Azw = 0. Model VI (cyan points)
lies in vicinity of the unstable branch of equilibria in the (0, 7)-
quarter and intersects only this quarter. Models IV (magenta points)
and V (yellow points) are intermediate states between Models 111
and VI. The sequence of models from I to VI shows a transition
between configurations very close to the branch of stable equilibria
and configurations close to the branch of unstable equilibria.

Fig. 9 shows the orbital evolution of the selected models at the
(Aw, ¢)-plane. Both angles of Fit I librate around 7, although
the amplitude of ¢; libration is large. For the second model in the
test sample (Fit II), the ¢, libration amplitude reaches 27, while

The origin and dynamics of Kepler-29 system 2375

Aw librates with a moderate amplitude. Since the amplitude of
¢1(?) is actually greater than 27t, we could classify the behaviour
of this angle as circulation. Despite the formal rotation of ¢,
the phase-space trajectory of Fit II intersects only one quarter of
¥ —plane with (Aw, ¢;) = (7, 7). The next Fit III in the sample
exhibits both critical angles rotating and two quarters of ¥ —plane
are intersected by the phase trajectory. Two other quarters are being
avoided. Similarly, the phase trajectory of Fit IV intersects the same
two quarters of ¥ —plane. Yet the behaviour of the angles is differ-
ent. For Fit IV, ¢, seems to librate but with an amplitude larger than
27t. The next system, Fit V, shows both angles circulating, however
in this case Az remains mainly around O during the evolution, only
occasionally reaching 7. The last model, Fit VI, has Az librating
around 0 and ¢, circulating.

Similarly to Fig. 8, Fig. 9 also reveals the transition between two
different types of configurations (from Fit I to Fit VI). The sequence
of the configurations can be also analysed in energy plots of the
averaged system presented in Fig. 10. Mean orbital parameters of
Fit I to Fit VI are displayed in Table 3.

A given energy plot is constructed for values of the two integrals
C and K computed for each studied system. The energy of each sys-
tem is determined by the averaged Hamiltonian (see Appendix A).
Energy levels are plotted in the X-plane. The energy level for the
nominal system is plotted with blue solid curve, while black solid
curves are for other values of the energy, from the maximum of the
energy that corresponds to the stable equilibrium (black cross-circle
symbol in the (7, 7)-quarter of ¥-plane), down to smaller values.
The energy levels are limited from the bottom by H(e; =0, e, =0).
The levels could also be plotted for smaller values, although these
levels would become subsequently denser and they would be placed
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Figure 9. Evolution of example configurations that fit the data (see Table 2 for the masses and orbital parameters) presented at the (A, ¢1)-diagram. The

integration time is 10° yr.
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Table 3. Mean parameters of the selected configurations whose osculating
Keplerian elements are given in Table 2.

Solution/planet m(Mg) a(au) e o (deg)
1/b 7.5173 0.092 8783 0.006 02 53.16
/e 6.5125 0.109 8163 0.008 71 220.76
1I/b 6.2177 0.092 8756 0.00691 68.06
/e 5.4607 0.1098110 0.009 27 209.73
11I/b 7.5940 0.092 8799 0.007 79 12.87
Il/c 6.6879 0.109 8067 0.008 62 —111.90
IV/b 7.2520 0.0928714 0.01126 58.13
IVic 6.0265 0.109 8052 0.00491 193.85
V/b 5.1439 0.092 8691 0.01470 —16.53
Ve 4.4826 0.109 8080 0.014 50 —84.06
VI/b 5.9161 0.092 8795 0.01724 89.52
Vl/c 6.1775 0.109 8070 0.02797 68.22

further from the centre of the plane. Other three cross-circle sym-
bols in the remaining quarters represent positions of the unstable
equilibria.

Let us recall that Fig. 8 shows positions of equilibria of the aver-
aged system (periodic orbits of the full, non-averaged N-body model
of motion) computed not for one particular value of C, like in Fig. 10,
but for a series of values. This leads to whole branches/families of
equilibria shown with green and red curves for stable and unstable
equilibria, respectively. On contrary, green and red curves in Fig. 10
represent periodic orbits of the averaged system, green are for sta-
ble, while red for unstable configurations. Big red/black symbols
point where the nominal systems intersect the X-planes. The points
of intersections can be compared with the ones in the right-hand
panel of Fig. 8. Small differences are present between the results
of the N-body and the averaged model, which may be easily ex-
plained. The averaged model is of the first-order with respect to the
perturbation, which do not have to be necessarily small for such
a compact two-planet system. Nevertheless, a sequence of models
from Fit I (close to the stable equilibrium) to Fit VI (close to the
unstable equilibrium) is apparent here as well.

A common feature of all the models is a close proximity of their
nominal energy curves to the bifurcation of the branches of periodic
orbits of the averaged system in the (;r, 7 )-quarter (see the arrows
in the top-left panel of Fig. 10). Moreover, the energy values are just
below the critical energy of the saddle point in the (0, 77)-quarter.
Naturally, those two characteristics of the energy for the nominal
systems are not independent one from another, since the structure
of periodic orbits is determined by positions of the equilibria. This
feature may be a ‘fingerprint’ of the migration scenario, which we
discuss in the next section.

4 PLANETARY MIGRATION

To reproduce the observational Kepler-29 system, and its fea-
tures discussed in Section 3, we conducted migration simulations
within a simple parametric model of the force which mimics the
planet—disc interactions (e.g. Beaugé et al. 2006; Moore, Hasan &
Quillen 2013):

v; Vi — U

_ 2l )

2 Ta,i Te,i

fi:_

where v; is the astrocentric velocity of planeti (i = 1, 2), v, is the
velocity at circular orbit at a distance of planet i. The time-scales
of migration and circularization of planet i are denoted by 7, ; and
7., i, respectively.
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We assumed that 7, ; = 7, ;/k, where « is constant and

. —a
ni=n (1) ep/1). 5)
au

where 7, @ and T are constant. The free parameters of the model
were being changed in wide ranges, i.e. « € [1, 300], « € [0.1, 1.5],
7o € [103, 10°] yr, T € [10*, oo] yr. Initial orbits were chosen such
that the period ratio was between 9/7 and 4/3, the eccentricities
~0 and the angles were chosen to be 0. The choice of the initial
period ratio smaller than 4/3 stems from the fact that for initial
P,/P, > 4/3, the system would very likely enter 4:3 MMR, taking
the migration parameters from the ranges given above.

After a series of simulations, we found the following properties of
systems stemming from the migration. For small « < 10, moderate
and high eccentricities (2 0.03) were possible to obtain, however
Awo librates around 7z, which is opposite to the results of fitting the
data. Additionally, such systems have always ¢; librating around
7. Both the angles librate around 7. For moderate « ~ 100, small
eccentricities < 0.01 are obtained and Aw spans the whole range,
revealing both librations around 7 or circulations, which agrees
with the statistics of models that fit the data.

Next, we tried to find configurations resulting from the convergent
migration, which could form the sequence of six models analysed
in the previous section. They should transform from one class of
configurations (close to the stable equilibrium) to another class
(close to the unstable equilibrium).

After a series of experiments, we found that three out of six
models could be qualitatively reconstructed by a single migration
simulation. The results of such a simulation are illustrated in Fig. 11.
Its parameters as well as the initial orbital elements are given in
the caption to this figure. Subsequent panels, from the top to the
bottom, correspond to the period ratio, eccentricities, Az and ¢,
evolution in time. Shortly after the system reaches the 9:7 MMR,
the eccentricities are excited, i.e. e; oscillates in a range of [0.004,
0.008] and e, € [0.006, 0.01]. Both critical angles librate around
7, Aw with very small amplitude <1°, while ¢, with much larger
amplitude of ~70°. Both the amplitudes increase in the first part of
the simulation ¢ < 125 kyr. If the migration has stopped for some
reason at this stage of the evolution, Az would librate with too
small amplitude, when compared to the examples listed in Table 2
and also to the systems from the whole statistics of the TTV fits.

At t ~ 125kyr, the system switches into a different regime of
motion. Both Az and ¢, start to circulate, the ranges of the eccen-
tricities oscillations also change. After ~10kyr since the transition
(att ~ 135 kyr), the angles start to librate again with decreasing am-
plitudes. One should keep in mind, though, that it is not a generic
situation. If 7" had a higher value (which would mimic slower disc
dispersion), the system would leave the resonance eventually. If, on
the other hand, 7 was smaller, the migration could stop before the
transition between the two discussed regimes of motion.

More details about the evolution of a system trapped in 9:7 MMR
could be found in our upcoming paper. Here, we only present an
example showing that systems listed in Table 2 can be formed
through the migration. A critical issue is the transition described
above. It occurs if the energy of the migrating system reaches the
bifurcation of the branches of periodic orbits (see the arrows in the
top-left panel of Fig. 10).

We chose three moments of the simulation, t = 126, 136 and
200 kyr, respectively, and we integrated the N-body equations of
motion for the three sets of the osculating Keplerian elements
at those epochs. Snapshots of their evolution are presented at the
(Aw, ¢)-diagrams in Fig. 12.
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Figure 11. An example of the migration simulation which leads to sys-
tems similar to Kepler-29. Initial semimajor axes are a; = 0.2au and
ap = 0.237 23 au, eccentricities e; = e, = 0.0001, both arguments of peri-
centre and mean anomalies are set to 0. Planets masses are m; = 5.1 Mg
and my = 4.4 Mg. Parameters of the migration 7o = 12kyr, T = 40kyr,
a =13,k =130.

The left-hand panel reminds the bottom-left panel of Fig. 9
(Fit IV) as well as the middle panel of Fig. 5 for the observa-
tional model close to the best-fitting solution in Table 1. Both the
angles formally circulate, however, similarly to Fit IV, ¢, librates

with the amplitude greater than 27t. The evolution of the angles is
not independent one from another, since the phase trajectory avoids
certain areas of the (Aw, ¢)-diagram. The right-hand panel of
Fig. 12 reminds the top-left panel of Fig. 9 (Fit I). Both the angles
librate and the amplitudes for the simulated system correspond well
to the amplitudes for Fit I. The system in the middle panel can be
interpreted as an intermediate state between the systems illustrated
in the left- and right-hand panels of Fig. 12. The amplitude of ¢,
libration reaches 27t, which corresponds to the behaviour of Fit II
(the top middle panel of Fig. 9). The only difference between the
simulated system and Fit I is the behaviour of Az . Yet we also note
that the evolution of critical angles for Fits V and VI is very similar
to the observational models illustrated in the left- and right-hand
panels of Fig. 6.

The examples stemming from the migration simulation ensure
us that the Kepler-29 system could be formed by the planetary
migration if its orbits are close to circular. On the other hand, the
systems with higher eccentricities (and aligned orbits) which are
also consistent with the TTV observations are less likely to be
formed in this way. Nevertheless, the migration induced formation
of the 9:7 MMR as well as other second-order and higher order
resonances is a very complex mechanism. It needs to be studied in
more detail in order to bring a definitive solution.

5 CONCLUSIONS

We analysed the TTV data from Rowe et al. (2015) of the Kepler-29
system with two low-mass planets of a period ratio very close to
9/7 (Jontof-Hutter et al. 2016). We confirmed that the masses of the
planets are within a few Earth mass range, i.e. ~6 Mg and ~5 Mg
for the inner and the outer planet, respectively. We demonstrated
that, although the eccentricities as well as longitudes of pericentres
are not well determined, the system is very likely in an exact 9:7
MMR. We found configurations with both aligned and antialigned
apsides, that are long-term stable and fit the data equally well. The
eccentricities may be as high as 0.3-0.4 for models with aligned
orbits, while for antialigned configurations only low eccentric orbits
are allowed by the observational and stability constraints.

We demonstrated that the critical angles of the resonant configu-
rations do not necessarily librate. That also implies that the secular
angle Aw may both rotate or librate, around O or 7. The resonant
nature of such systems can be verified at the frequency maps (right-
hand column of Fig. 5) as well as at the (Aw, ¢ )-diagrams (Fig. 9).
The fundamental frequencies related to the mean motions are very
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90 90
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Figure 12. Evolution of example configurations stemming from the migration simulation illustrated in Fig. 11, presented at the (Aw, ¢)-diagram. The

integration time is 10° yr.
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close to the nominal value of 9/7 for the systems whose resonant
angles rotate. Moreover, the evolution of the angles Aw and ¢ is
correlated.

We showed that the best-fitting solutions with low eccentricities
(both with aligned and antialigned apsides) are shifted with respect
to the periodic orbits (equilibria of the averaged system) of 9:7
MMRs, and demonstrated that it is a natural outcome of the plan-
etary migration. That holds even for configurations that lie close
to the branch unstable periodic orbits for Aw = 0 (Fit IV). On
the other hand, we showed that configurations with ¢ > 0.03 and
Aw ~ 0 are unlikely to be formed on the way of migration. Systems
with e 2 0.03 and Aw ~ 7 can form this way, but configurations
of this sort do not fit the TTV observations. Therefore, we conclude
that if the Kepler-29 system was formed through the smooth migra-
tion, its orbits are low eccentric e < 0.03, but the behaviour of Awr
and the resonant angles can be hardly determined on basis of the
available TTV data.
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APPENDIX A: ANALYTIC 9:7 MMR
HAMILTONIAN

The secular and the resonant parts of the averaged Hamiltonian
(equation 3) read as follows (Murray & Dermott 1999).
The secular Hamiltonian is expressed through

Rsec = fi+ (ei+&3) fotel futerer fs+e fo
+(€1 e fio+ e er fiy +ei e flz) cos Aw
+é2é? fi7 cos2Aw, (A1)

where f; are functions of the semimajor axes ratio X = a; /a, through
the Laplace coefficients b(lj/)z(X ) and their derivatives. They read

1

fi= ED(),()s

1
fa= 3 (2D 0+ D1y) ,

= ! 4D D
f4—@( 3.0 1 4,0),

1
fs = D (4Dy o+ 14D50 +8D3 0 + Day) .

1
Jfo= 128 (24D10 + 36D, + 12D5 0 + Day)

1
fio = 1 (ZDo_l —2D;,; — D2.1) )

1
fir = 35 (-4D2 = 6D = Duy).

1
S = 7 (4Do, — 4Dy — 22D, —10D3; — Dy ),

S}

1
Sir = o (12Dg> — 12Dy 2 + 6D25 +8D32 + D) |
where
di b(.f)
D;=X d};fz. (A2)

Resonant terms that remain after averaging the expansion of the
perturbing function,

Rres = (e fis + €] fio + €] €3 fi7) cos 20
+ (e1e2 faio + €} €2 fso + €1 €3 f51) cos(oy + 02)
+ (&3 fss + e €3 fsu + €5 fs5) cos 20,
+ef e feg cos(3o, — 07)

+e; e% f()g COS(30’2 — 01), (AS)
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where coefficients are specified as follows: 1
P fis = 5 (263D +34D1 7+ Day)

1
fis =5 (279Doy +34D 1 + Dao) 1

fu=35 (—51548Dy7 — 6070D, 7 + 209D, 7 +40D3 7 + D7)

1
fas = ¢ (=66222D0,9 = 8174Dy9 +69D;9 +36D39 + Dy) |
fss = % (—=70422Dy7 — 7878D; 7 + 249D, 7 + 44D3 7 + Dy 7) .

1
fir = 35 (=90396D05 — 10390D1 5 + 97D+ 40D3 + Do) X
Jes= % (99940Dy, 19+ 11 642Dy 19— 21D5,10—38D3 10— Da.10)

1
f49 = Z (—272D08 - 34D1,8 - DZ,S) ) 1
foo =5 (43884Dg 6 +5022D; 6 — 279D, 6 — 42D3 6 — Dagg) -

1
fo=75 (59024 D3 + 7126D; 3 — 139D, s — 38D3 5 — Dug) ,

1
= — 28D, 130D, 3 — 173D, 3 —42D5 3 — D.
Al 32 (80 528Dos +9130D15 73D.g 38 4’8) ’ This paper has been typeset from a TEX/IATEX file prepared by the author.

MNRAS 465, 2366-2380 (2017)

9102 ‘€T Joquisdaq uo 1senb Aq /6.0°seulnolploxoseuw//:dny woly papeo jumoq


http://mnras.oxfordjournals.org/

