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Abstract

The HR8799 planetary system with four ;10mJup planets in wide orbits up to ;70 au and orbital periods up to
500 yr has been detected with direct imaging. Its intriguing orbital architecture is not yet fully resolved due to time-
limited astrometry covering only ;20 yr. Earlier, we constructed a heuristic model of the system based on rapid,
convergent migration of the planets. Here we develop a better-structured and CPU-efficient variant of this model.
With the updated approach, we reanalyzed the self-consistent, homogeneous astrometric data set in Konopacky
et al. The best-fitting configuration agrees with our earlier findings. The HR8799 planets are likely involved in a
dynamically robust Laplace 8e:4d:2c:1b resonance chain. Hypothetical planets with masses below the current
detection limit of 0.1–3mJup within the observed inner or beyond the outer orbit, respectively, do not influence the
long-term stability of the system. We predict the positions of such nondetected objects. The long-term stable orbital
model of the observed planets helps to simulate the dynamical structure of debris disks in the system. A CPU-
efficient fast indicator technique makes it possible to reveal their complex, resonant shape in 106 particles scale.
We examine the inner edge of the outer disk detected between 90 and 145au. We also reconstruct the outer disk,
assuming that it has been influenced by the convergent migration of the planets. A complex shape of the disk
strongly depends on various dynamical factors, like orbits and masses of nondetected planets. It may be highly
noncircular, and its models are yet nonunique regarding both observational constraints and its origin.

Key words: astrometry – celestial mechanics – methods: numerical – planets and satellites: dynamical evolution
and stability – stars: individual (HR 8799)

1. Introduction

The HR8799 planetary system was discovered by Marois et al.
(2008) as a three-planet configuration. After 2 yr, the fourth
innermost planet was announced by the same team (Marois
et al. 2010). Since the discovery, this unusual extrasolar planetary
system has been studied in literally tens of papers. The parent-star
age and companion masses, as well as the orbital architecture and
its long-term stability, debris disks, and formation, are analyzed in,
e.g., Goździewski & Migaszewski (2009), (2014); Lafrenière et al.
(2009); Metchev et al. (2009); Reidemeister et al. (2009); Su et al.
(2009); Fabrycky & Murray-Clay (2010); Hinz et al. (2010);
Marshall et al. (2010); Moro-Martín et al. (2010); Bergfors et al.
(2011); Currie et al. (2011), (2012); Galicher et al. (2011);
Soummer et al. (2011); Baines et al. (2012); Sudol &
Haghighipour (2012); Esposito et al. (2013); Oppenheimer et al.
(2013); Marleau & Cumming (2014); Matthews et al. (2014);
Maire et al. (2015); Pueyo et al. (2015); Booth et al. (2016); Contro
et al. (2016); Currie (2016); Götberg et al. (2016); Konopacky
et al. (2016); Zurlo et al. (2016); Wertz et al. (2017); Read et al.
(2018); Wilner et al. (2018); and counting.

Regarding a characterization of the parent star and its planets,
as well as the past and to-date observations of debris disks in the
system, we refer to the recent papers by Booth et al. (2016), Read
et al. (2018), and Wilner et al. (2018) and references therein.
Following these works, the star is very young, ∼60Myr, within
the most likely interval of 30–160Myr. We adopt its mass må of
1.52Me and masses of the planets in the range of 5–10mJup

(Marois et al. 2010).
In spite of the enormous literature on the HR8799 system,

many questions are still open. The global, orbital structure of the
HR8799 system is a particularly interesting problem. The ratio of
;120 (α, δ) measurements in the literature, collected in Wertz
et al. (2017), to 24 geometrical elements (free parameters) is 4–5,

and it did not significantly change over the past few years, since
the discovery of the fourth companion in Marois et al. (2010).
Moreover, the major limitation of the astrometric models is small
coverage of the orbits by the measurements, between ;3% and
;12% for planets HR8799b and HR8799e, respectively, given
significant uncertainties of ;10 mas. These weak observational
constraints permit a variety of nonunique orbital geometries,
although all of them seem to be equally good fits to the
observations (e.g., Konopacky et al. 2016; Wertz et al. 2017).
A dynamical analysis of the best-fitting Keplerian solutions

reveals that they represent crossing orbits and configurations
that are unstable in an enormously short 0.5–1Myr timescale.
Simple and natural requirements of the stability, like the Hill
criterion, do not constrain the orbital models either, e.g.,
Konopacky et al. (2016, their Figure 3) and Wertz et al. (2017,
their Figure B.1, especially the panel for planet d). Finding
long-term stable configurations simultaneously fulfilling astro-
metric and mass constraints is difficult even for the lower limit
of the star age of 30Myr and the low limit of the planet masses.
It is still uncertain whether or not the system is strongly

resonant, long-term or only marginally stable, or unstable at all
(e.g., Goździewski & Migaszewski 2009, 2014; Fabrycky &
Murray-Clay 2010; Götberg et al. 2016). It may remain a
matter of some philosophical debate unless the orbits are
observationally sampled for a sufficiently long interval of time.
Furthermore, it is unclear how the system was formed (Marois
et al. 2010), given that massive planetary or brown-dwarf
companions are found relatively close to the star.
Regarding dynamical arguments, none of analytic or semi-

analytic criteria of stability apply to the HR8799 system.
The early dynamical studies of the three-planet system (Marois
et al. 2008; Goździewski & Migaszewski 2009; Reidemeister
et al. 2009; Fabrycky & Murray-Clay 2010) revealed that even
quasi-circular and apparently wide ;70 au orbits are separated
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by less than 3–4mutual Hill radii. Such configurations are
predicted as self-destructing statistically in a fraction of a
1Myr timescale (Chambers et al. 1996; Chatterjee et al. 2008;
Morrison & Kratter 2016) unless a protecting dynamical
mechanism is present. Indeed, coplanar or close to coplanar
orbits of three outer planets involved in a stable Laplace
4d:2c:1bmean-motion resonance (MMR) were found, explain-
ing the astrometric observations of the HR8799 system,
shortly after its discovery (Goździewski & Migaszewski 2009;
Reidemeister et al. 2009; Fabrycky & Murray-Clay 2010;
Marshall et al. 2010; Soummer et al. 2011).

However, the stability problem became much harder with the
fourth planet announced in Marois et al. (2010). Even assuming
a protecting MMR mechanism, the orbital parameters of long-
living configurations may vary only within small limits
(Goździewski & Migaszewski 2014) or must be particularly
tuned, since they are extremely chaotic and prone to tiny
changes of the initial conditions and the numerical integrator
scheme (Götberg et al. 2016).

Seeking long-term stable orbits of the planets has a
“practical” aspect, since they are needed for simulating debris
disks in the system (Booth et al. 2016; Contro et al. 2016; Read
et al. 2018; Wilner et al. 2018). The outer debris disk might be
present between ;90 and ;450 au. According to models of the
ALMA observations in Booth et al. (2016) and Read et al.
(2018), the inner edge of this disk should be placed at ∼145au,
beyond the direct influence attributed to planet HR8799b at
roughly ∼90au. It might indicate the presence of an additional
fifth planet below the current detection limit of a few Jupiter
masses. However, Wilner et al. (2018) argued that combined
ALMA and VLA observations with higher spatial resolution do
not favor the fifth-planet hypothesis, and the inner border of the
disk may be detected at ;104 au, consistent with the currently
known four-planet configuration. Moreover, they constrained
the outermost planet mass -

+m 6b 3
7 mJup.

We note that some of the works devoted to debris disks
(Booth et al. 2016; Contro et al. 2016; Read et al. 2018) made
use of our best-fitting model representing the Laplace MMR
chain (Goździewski & Migaszewski 2014), which was found
with observations up to the epoch of 2013. The most recent
papers regarding the astrometric models of the HR8799
system based on to-date observations, until epoch 2014.93,
focus mostly on Keplerian solutions (Konopacky et al. 2016;
Wertz et al. 2017). These best-fitting, or most likely, models, in
terms of the Bayesian inference, exhibit different geometries,
such as non-coplanar, highly eccentric nonresonant, or partly
resonant orbits, but have not been examined for their long-term
orbital stability. Therefore, such solutions are not suitable for
the dynamical analysis of the debris disks.

In this work, we propose to resolve the structure of these disks
with CPU-efficient fast indicators based on the maximal
Lyapunov characteristic exponent (mLCE), instead of integrat-
ing orbits for a required full time span. For that purpose, we need
to construct long-term, rigorously stable orbits of the planets that
are robust against small perturbations. Such stable planetary
models are helpful to localize “missing” (nondetected) planets or
to investigate influence of such putative planets on the debris
disks.

This paper is structured as follows. After this Introduction,
Section 2 presents an update of the model of astrometric data
through constraining it by the process of planetary migration.

Section 3 regards the results and details of orbital architectures
of the HR8799 system derived for a self-consistent set of
astrometric measurements in Konopacky et al. (2016) made
with the KeckII telescope. The results in this part support our
idea of the orbital analysis or could be at least an alternative
and reasonable approach when compared with other solutions
in the literature. Section 4 is for our model of debris disks based
on the fast indicator technique, and we describe the results of
its time calibration with the direct numerical integrations.
Simulations of yet-undetected planets in the system are
described inSections 5 and 6. We analyze the dynamical
structure of the inner and outer debris disks in Sections 5 and 7,
respectively. We also investigate a scenario of the outer disk
influenced by migrating planets in Section 8. Some apparent
discrepancies between our approach and the results in the
recent literature are addressed in Section 9. We summarize the
work in Section 10.

2. The Migration Algorithm Revisited

The phase space of mutually interacting planetary systems
has a discrete, noncontinuous structure (Malhotra 1998). This
feature may be useful to introduce implicit constraints on the
otherwise huge multidimensional space of free parameters. The
key idea relies on the evolution of the orbital elements in
migrating planetary systems. Due to the planetary migration,
these elements may be tightly self-constrained, depending on
an established MMR. We assume that such, although not
necessarily a realistic or fully resolved dynamical process,
orders the planetary system and drives it to an equilibrium
state. In such a state, the orbital elements, like the semimajor
axes, orbital phases, and eccentricities, are limited to certain
narrow ranges. This coherence is crucial, since it also provides
the long-term dynamical stability.
The essential optimization problem is to find MMR-trapped

systems that reproduce the observations at some time. We
solved it with the migration constrained optimization algorithm
(MCOA), as dubbed earlier in Goździewski & Migaszewski
(2014). The MCOA makes use of a heuristic model of the
planetary migration (Beaugé et al. 2006; Moore et al. 2013) and
theoretical estimates of the planetary masses, consistent with
the recent cooling theory (Marois et al. 2010; Baines et al.
2012; Marleau & Cumming 2014).
The original MCOA would require repeating CPU-demand-

ing computations if the astrometric data significantly change. A
recent publication of revised and unified astrometric measure-
ments in Konopacky et al. (2016) inspired us to search for
CPU-efficient, and perhaps improved, implementations of the
method. Indeed, we developed a better-structured computa-
tional strategy that consists of two essentially independent
steps. These steps may be conducted individually, instead of
running the original monolithic code. The updated scheme,
much easier to follow and repeat, if necessary, is illustrated in
Figure 1 and described below. (Figure 1 may be considered a
graphical plan of this paper.)

2.1. A Set of MMR-captured Systems

At the first step, we build a database of systems formed through
migration of an appropriate number of planets. Their semimajor
axes may be only roughly consistent with the observations. We
consider coplanar systems, following arguments behind the
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planetary migration theory (e.g., Armitage 2018 and references
therein). Orbital elements such as eccentricity, nodal angle, and
mean anomaly are self-consistently tuned by the migration. The
planetary masses may be constrained by cooling models (Baraffe
et al. 2003; Marleau & Cumming 2014) or sampled from a
preselected distribution.

We may consider any reasonable variant of the migration
theory at this stage. The crucial point is that the planetary
migration leads to the MMR capture and establishes stable
systems. In order to mimic the migration with the N-body code,
we modify the astrocentric equations of motion with a force
term (Beaugé et al. 2006; Papaloizou & Terquem 2006; Moore
et al. 2013),

t k t
= - -

-
- ( )f

v v v

2
, 1i

i

i

i c i

i i

,
1

where vi is the astrocentric velocity of planeti=1, 2, 3, K, N,
and vc i, is a velocity of planeti at a circular Keplerian orbit at
the distance of this planet. We note that the HR8799 planets
are numbered with i=1, 2, 3, K with respect to their
increasing distance from the star, or we mark them with Roman
letters, from the innermost “e”≡“1” to the outermost
“4”≡“b” or “f”≡“5,” following the order in which they
were discovered and named (Marois et al. 2008, 2010).

The timescale of migration of planeti is denoted with τi,
while κi is the ratio between τi and the timescale of orbital
circularization, which may be uniform for all planets in the
system. Moreover, τi could depend on time that simulates a
dispersal of the disk, i.e., t t= =( ) ( )t t T0 expi i dis , where Tdis
is the characteristic time of the decay.

The migration experiments described below were conducted
with the initial semimajor axes by 3–4 times as large as in the
observed system, yet each one was selected randomly within a
50% deviation from its nominal values for the 8e:4d:2c:1b
Laplace resonance. The initial eccentricities were selected
randomly, e1,2,3,4ä[0, 0.16). The pericenter arguments ϖi and
the mean anomalies i were drawn from the uniform
distribution in [0°, 360°). As for the planetary masses mi, we
choose the uniform distribution limited within the [6, 10]mJup

range.

In order to introduce a variability in the outcome configura-
tions, we considered a few variants of Equation (1), with κi
selected randomly for each planet around amean κä[1, 300)
or by choosing it the same for all planets. We also randomly
changed the dispersal time Tdisä[1, 30]Myr, or it was infinite.
We randomized individual timescales of the migration τiä[1,
30]Myr, forming a decreased sequence, in order to obtain
convergent migration.
The equations of motion were integrated until a traced

system did not disrupt and the hierarchy of the initial
semimajor axes was preserved. We stopped the integrations
when the inner semimajor axis in the migrating systems
became a1<14.6 au. Then we integrated the N-body
equations of motion without dissipation for an additional
32,768 steps of 400days (∼1/45 of the innermost period), in
order to determine the proper mean motions for all planets. The
proper mean motions are the fundamental frequencies fi
resolved with the refined Fourier frequency analysis (Las-
kar 1993; Šidlichovský & Nesvorný 1996) of the time series

l{ ( ) ( ( ))}a t i texpi i , where ai(t) and λi(t) are the canonical
osculating semimajor axis and the mean longitude, respec-
tively, as inferred in the Jacobi or Poincaré frame. Then we
computed the linear combinations of the fundamental frequen-
cies,

åD º
=

( )nf n f ,
i

N

i i
1

where º ¼[ ]n n n, , N1 is a vector of integers in the [−6, 6] range,
which yields small D∣ ∣f . In this way, we aimed to find possible
low-order multibody MMR chains. Simultaneously, we examined
critical angles corresponding to h = D∣ ( )∣nfarg min ,

åq h lºh
=

( )t .
i

N

i i
1

If h =∣ ∣ 0, in accord with the d’Alambert rule, then the
resonant configuration may be called the generalized Laplace
resonance (Papaloizou 2015), or the multiple MMR chain of
zeroth order.
Two typical examples of the resonance capture of four-

planet systems are illustrated in Figure 2. The left column is for
a system trapped in the generalized Laplace resonance that
exhibits librations of at least two critical angles, with
amplitudes of several degrees: the “classic” Laplace resonance,
which we studied in Goździewski & Migaszewski (2014), is
distinguished through

q q l l l lº = - - +- - 2 2 ,8:4:2:1 1: 2: 1:2 1 2 3 4

as well as another critical angle θ−1:4,−5:2. In this four-body
MMR chain, the orbital period ratios are pairwise close to 2.
The second example, in the right column of Figure 2, shows

a zeroth-order four-body MMR with librations of only one
critical angle θ−1,4,−6,3 (θ8:4:2:1 circulates). Moreover, the
middle pair of planets exhibits the orbital period ratio close
to 2:5 (see the bottom panel with Δf in Figure 2).
In both cases, the inner eccentricities are excited to moderate

values of ;0.1, which usually leads to good orbital fits.
Figure 3 shows the distribution of osculating astrocentric

orbital periods and eccentricities attained when a1<14.6 au.
At this moment, which is the reference zero epoch for further
optimization, the migration simulation was stopped. A feature

Figure 1. Graphical representation of the MCOA. Major steps and the most
important parameters are listed. The diagram also illustrates a plan of this work.
See the text for details.
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of this distribution is an overpopulated regime of 2:1 MMR for
subsequent pairs of planets. The 2:1 MMR appears most
“easily,” in spite of significantly varied initial orbits, masses,
and migration parameters. The final eccentricities may be as
large as 0.2, yet the most frequent values are found around
0.02–0.05.

The statistics of migrated configurations illustrated in
Figure 3 also involves a significant fraction of systems with

the innermost and outermost pairs in the 3:1MMR. However,
such systems do not fit the observations, since the semimajor
axis of HR8799b appears to be too wide, ab∼80 au.
An interesting result flowing from identification of the

MMRs is a dominant proportion of the zeroth-order MMR
chains, which may be estimated to be as large as ∼90% in the
total sample of ∼1.5×105 systems. It may deserve further
study, which we aim to conduct in aseparate work.

Figure 2. Migration capture of four HR8799 planets into the generalized Laplace resonances. Panels from top to bottom illustrate temporal evolution of the
semimajor axes, orbital period ratios of subsequent pairs of planets, eccentricities, and the critical arguments (two bottom panels). The disk decay timescale Tdis, as
well the migration timescales τa and τe≡κ−1 τa in square brackets, are in Myr; Pj:Pi and fj:fi mean ratios of the astrocentric orbital periods and the proper mean
motions fi for subsequent pairs of planets; Δf[η1, η2, η3, η4] is for the absolute range of the linear combination of the frequencies fi and is expressed in radians per the
so-called long day of 2π yr−1;58.13 days. All panels were generated in the course of the simulations. See the text for more details.
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Similar results were obtained at early preparation of this
paper regarding five-planet systems, with a hypothetical planet
HR8799f beyond the orbit of HR8799b and a small mass of
;2mJup below the present detection level. In this case, the
initial spread of semimajor axes in migrating systems was
closer (±20%) to the 2:1MMRs for subsequent pairs.
Regarding eccentricity, the only qualitative difference with
the four-planet simulations is a longer tail in the histogram for
planetb, extended for eb∼0.15, which is forced by the outer
planet HR8799f.

Here we consider essentially the most simple model of the
migration. One could apply more sophisticated theories
accounting for the mass growth or stochastic migration
(Papaloizou & Terquem 2006; Armitage 2018). At this stage,
it is more important to gather a large set of orbital elements
representing long-term stable systems, trapped in possibly
different MMRs, than to analyze the process in fully realistic
settings.

2.2. Constraining MMR Orbits with Astrometric Data

At the next step, the MMR-trapped systems from the MCOA
database are fine-tuned to fit particular or all available observations.
Only a fraction of them may reproduce the observed system. Here
we rely on the scale-free property of the N-body equations of
motion, which allows for scaling the semimajor axes through a
factor of ρa>0, without changing the dynamical character of the
scaled system.

We find the osculating epoch t0ä[−T0, T0], relative to the
end time of the migration (zero epoch), where T0 is typically
∼103 outermost periods, since the orbits have different orbital
periods and quickly precess (v -  -˙ 500 yr 1). We also need
to fit three Euler angles (I, Ω, ω) that rotate the orbital plane of
the original system to the observer (sky) plane. The synthetic
astrocentric signal is derived by propagating linearly rescaled
orbits through the numerical solution of the N-body equations
of motion for time t0, relative to the zero epoch of the
migration, with the initial eccentricities and orbital phases of

their self-consistent, MMR-fixed values. The parameters
r w= W( )p t I, , , ,a 0 are arguments of the merit function

expressed as cn ( )p2 or the maximum-likelihood function
 c~ - n( ) ( )p plog 22 (Bevington & Robinson 2003). We

use the Bulirsh–Stoer–Gragg (BSG) numerical integrator to
solve the equations of motion (Hairer et al. 2002). The absolute
and relative local error limits are set to ∼10−15.
We underline that the astrocentric model of the observations

is based on the self-consistent canonical N-body dynamics,
unlike the Keplerian geometric parameterization used fre-
quently in the literature. The N-body model is more CPU-
demanding, but it explicitly accounts for the planetary masses
and the mutual gravitational interactions between the planets.
We demonstrate its importance when discussing the results
(Section 3).
The optimization is performed for a number of MMR

systems with the help of evolutionary algorithms (Charbon-
neau 1995; Price et al. 2005; Izzo et al. 2012). Furthermore, the
Bayesian inference and MCMC sampling make it possible to
introduce prior information on the system parameters, in order
to estimate their uncertainties and correlations. We choose
models yielding reasonably small cn

2 as the best-fitting
solutions.
What separates the planetary migration (step I) from the orbital

optimization (step II) is the scale-free property of the N-body
Newtonian dynamics. In the barycenter frame, they read as

å= ¹ = ¼
∣ ∣

( )r
r

r
k m i j N¨ , 0, , , 2i

j
j

ji

ji

2
3

where º -r r rji j i is the relative radius vector from a body i to
a body j, where i, j=0 denotes the star; mj are for the masses
(m0≡må); and k2 is the gravitational constant. The scaling
invariance of the particular ordinary differential equations
(ODEs), here Equation (2), means that if a particular ( )r ti is the
solution to these equations, then r r- ( )r tia

2 3
a with some fixed

and constant scaling factor ρa>0 is also the solution.

Figure 3. Graphical representation of the MCOA database that consists of ∼1.5×105 four-planet configurations obtained through the planetary migration. The top
row is for the distribution of osculating, astrocentric period ratios at the epoch zero, when the inner semimajor axis ae<14.6 au. Peaks in the top row indicate low-
order two-body MMRs. The bottom row is for the distribution of osculating, astrocentric eccentricities at the zero epoch.
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Therefore, the orbital radii, or orbital arcs at prescribed time
intervals, may be scaled by the same factor but with an
appropriate time change. Such a geometrically rescaled copy of
the orbits exhibits the same dynamical character as the original
system.

The N-body ODE scaling invariance is illustrated in
Figure 4. By following a migrating planetary configuration,
we usually end up with too-compact (left column) or too-wide
(right column) orbits with respect to the observations. In fact,
these configurations are rescaled copies, by a factor of 0.8 and
1.33, respectively, of the directly simulated system in the
middle column. Apparently, it fits relatively well to the
observations. This resonant configuration has been obtained
through a fast migration during only 1.8Myr. In spite of a
substantial scaling, the dynamical character of all configura-
tions is preserved for at least 100Myr: the critical angles of the
zeroth-order generalized Laplace resonance (Papaloizou 2015)
oscillate around the same center, and the eccentricities vary
within the same limits (middle and bottom rows in Figure 4).

We note that the reference configuration is weakly chaotic in
the sense of a small mLCE. However, in this Lagrange-stable
configuration, all orbits remain bounded for a very long time.

The system remains stable since it is resonant, actually in an
unusual way—one of the critical arguments librates around the
same libration center, while the second one “switches” between
two centers. This example is selected intentionally to show that
even weakly chaotic configurations may be scaled without
losing any of the geometric features, like the critical angles or
eccentricity evolution.
The scale-free dynamics property releases us from an

uncertainty of the star distance. The present determination of
the parallax π=24.22±0.09 mas (∼41.3 pc) in the GAIA
Data Release2 catalog (Gaia Collaboration et al. 2018) places
the system almost 2pc farther than assumed in the literature to
date, d=39.4 pc (van Leeuwen & Fantino 2005). The
relatively significant correction of the parallax has essentially
no implication for the orbital models; besides, the planetary
masses may be larger due to a correction for the absolute
luminosity.

3. The Best-fitting Orbital Model

We searched for the best-fitting solutions to the astrometric
measurements in Konopacky et al. (2016) with the approach
described above. Homogeneous observations of the HR 8799

Figure 4. Illustration of scale-free dynamics at the second step of MCOA. Initial semimajor axes in a resonant configuration of four planets, shown in the middle
column, are linearly scaled by factors of 0.8 (left column) and 1.33 (right column). We selected two critical arguments of the generalized Laplace resonance,
θ=λ1−3λ2+λ3+λ4 and θ=2λ1−5λ2−λ3+4λ4 (two middle rows), which librate with similar amplitudes (two bottom rows). The innermost eccentricity
(second row from top), shown as an example, varies within similar limits.
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system in Konopacky et al. (2016) were obtained between 2007
and 2014 with NIRC2 on the KeckII telescope and the same
reduction pipeline. The data are corrected for systematic biases
present in the observations in the discovery papers (Marois
et al. 2008, 2010). The Keplerian (kinematic) solutions in
Konopacky et al. (2016) favor coplanar, low-eccentric orbits, as
well as agree to within 1σ with the 8e:4d:2c:1b resonance
model; hence, our assumptions are supported by their
independent analysis.

We aim to verify whether the MCOA model of these
observations, which are a subset of the data available to date
and gathered in Wertz et al. (2017; their Appendix), may be
extrapolated and fit all measurements made by different authors
with other instruments. We also found a significant deviation of
the synthetic model orbit IVa in Goździewski & Migaszewski
(2014) for the outermost planet, which systematically precedes
the latest observations in Maire et al. (2015) and Pueyo et al.
(2015). The new analysis could improve the previous model.

Among the found solutions, we selected the best-fitting
configuration yielding cn

2;0.87. Its osculating elements at
epoch t0=2004.532 of the first observation in Konopacky et al.
(2016), as determined from the primary fit parameter p, are
displayed in Table 1 (model IVK). We found tens of geometrically
similar configurations within cn  12 ; therefore, we focus on this
particular basis configuration. This model, representing the
8e:4d:2c:1b MMR chain, is similar to the best-fitting solution
IVa in Goździewski & Migaszewski (2014). Yet we note a
smaller value of the initial semimajor axis a4;67 au. We
examined this difference closely. As expected, the new solution
improves the astrometric model by providing a better match to the
first and last observations at epochs of 1998.83 and 2014.93 in the
whole data set, respectively. Indeed, it removes the systematic
trend and the “too-fast” orbital motion of planetb predicted by
our earlier model IVa.

3.1. Measuring the Stability of Orbital Solutions

In order to reveal the global dynamical structure of the
system, we use the fast indicator technique, besides the direct
integration of the equations of motion. The idea behind this
approach relies on determining the character of motion (chaotic
or regular) on relatively short orbital arcs. A configuration
classified as fast indicator–stable for a relatively short motion
time of ;104 outer periods may be extrapolated for a 10–100
longer Lagrange stability time (also called the event time, TE),
implying noncrossing, noncolliding, and bounded orbits.
Usually, the fast indicators are related either to the mLCE
(Cincotta & Simó 2000; Goździewski et al. 2008) or to a
diffusion of the fundamental frequencies (Laskar 1993).

As the fast indicator, essentially equivalent to the mLCE, we
use the mean exponential growth factor of nearby orbits
(MEGNO, hereafter á ñY ) developed by Cincotta & Simó (2000)
and Cincotta et al. (2003). It is implemented in our message
passing interface parallelized code μFarm. The required system
of the equations of motion and their variation equations may be
integrated with the BSG scheme (Hairer et al. 2002). We also used
the symplectic algorithm (Goździewski et al. 2008), which is
much more CPU-efficient, but it might be nonreliable in strongly
chaotic zones where collisional events are possible. We decided to
use the BSG scheme for the final experiments to avoid such
numerical and artificial biases.

For brevity, orbital configurations are called á ñY -stable if
á ñ - <∣ ∣Y 2 , where ò;0.05, for a particular number of

characteristic periods, counted in 104 outermost planet orbits.
The MEGNO integrations were stopped if á ñ - >∣ ∣Y 2 5, and
we consider such configurations unstable (á ñY -unstable). As we
found in previous papers, á ñY -stable models are equivalent to
Lagrange-stable solutions for intervals of time 1–2 orders of
magnitude longer.
More details on these MEGNO calibrations to determine the

Lagrange stability regarding the HR8799 system, as well as
low-mass planet systems, were discussed in our earlier papers
(Goździewski et al. 2008; Goździewski & Migaszewski 2014),
as well as in a new work (Panichi et al. 2017). We also note
that MEGNO has been recently used as a reference tool by
Hadden & Lithwick (2018), who developed a new quasi-
analytic stability criterion for eccentric two-planet systems.

3.2. The MCMC Experiment Setup

We conducted follow-up MCMC experiments aiming to
determine the orbital parameter uncertainties for stable
solutions found with MCOA and demonstrate the degree of
instability of the four-planet system. For that purpose, we
performed single-temperature MCMC sampling with the
emcee package (Foreman-Mackey et al. 2013). Recalling
our results in Goździewski & Migaszewski (2014), the orbital
elements in stable four-planet models may only be varied
within tiny ranges. Here we release the coplanarity constraint
and search for stable solutions around the best-fitting model
IVK. The Bayesian inference makes it possible to introduce
prior information, like indirect observational constraints. For
instance, the debris disk geometry determined independently of
the imaging astrometry is reported to be almost coplanar with
the planetary orbits and seen at a position angle around 50°–
60° (Matthews et al. 2014; Booth et al. 2016). Therefore, the
debris disk models could impose additional, indirect constraints
on the inclination I and nodal angle Ω of the system.
With the MCMC sampling of the parameter space, stable

planetary configurations might be detected, perhaps relatively
distant from the model IVK in Table 1. Therefore, in the search
for stable solutions, we conducted the MCMC sampling with
up to 2048 emcee walkers initiated in a small hyper-cube in
the orbital parameter space centered at the best-fitting model for
128,000–256,000 iterations each, mostly limited by CPU-
demanding stability checks made with the MEGNO indicator.
We evaluated cn

2 and the likelihood function  c~ - nlog 22

required to compute the posterior distribution. In this experi-
ment, the masses of the planets and all orbital elements are
considered as free parameters of the astrometric model.
In order to narrow the parameter space and reduce possible

degeneracies, we imposed Gaussian priors  m sm( ), with the
mean μ equal to the best-fitting values in Table 1. As for the
variances σμ, we chose the following: for the masses, σm=3mJup;
for the semimajor axes, σa=5 au; for the Poincaré elements,

w=x e cosi i i and w=y e sini i i, μx,y=0 and σx,y=0.3; and for
the inclinations and nodal longitudes, σI=30° and σΩ=60°. The
priors have been set as improper (uniform) for the osculating mean
anomalies at the initial epoch, Î  [ )0 , 360i , i= 1, K, 4.
During the MCMC sampling with the Gaussian priors, we

also evaluated the MEGNO of all solutions with c <n 2.62 to
determine the limits of the stability zone around the best-fitting
stable solution. The á ñY integration time was set to ;7000
outermost periods, hence permitting marginally Lagrange-
stable models. In accordance with our earlier experiments
(Goździewski & Migaszewski 2014), the á ñY integration
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interval should be safely longer than 104 characteristic periods,
in order to determine long-term Lagrange-stable configurations
for at least 160Myr. The á ñY -stable solutions for 7000
outermost orbits should provide a Lagrange stability time that
is 10 times longer (at least ;30Myr).

For reference, we also performed the MCMC sampling with
all priors uniform and determined wide parameter ranges
spanning 24mJup for masses mi and 30 au for semimajor axes ai
around their best-fitting values IVK in Table 1, as well as xi,
yiä[0, 0.67] for the Poincaré elements, Iiä[0°, 90°],
Ωiä[0°, 180°], and Î  [ ]0 , 360i (i= 1, K, 4).

We tried to estimate the autocorrelation time τemcee through
sampling experiments without stability checks, in order to
reduce the CPU overhead. We increased the chain length up to
512,000. We used the method of Sokal (1996), as proposed by
Foreman-Mackey et al. (2013) in the recent version of the
emcee sampler. We found that τemcee is typically very long
and varies between ∼40,000 and ∼120,000 for different
elements and priors. The second parameter expressing the
sampling “health,” the acceptance rate, was typically well
below 0.2, unless the emcee scaling parameter aemcee was set
to low values of ∼1.2. Similarly difficult and ill-conditioned

Table 1
Osculating Elements of the Best-fitting Four- and Five-planet Solutions

m (mJup) a (au) e I (deg) Ω (deg) ϖ (deg)  (deg)

Model IVa at Epoch of 1998.83, må=1.56 Me (Figure 7, top row, and Figure 12)

HR8799e 9±2 15.4±0.2 0.13±0.03 176±6 326±5
HR8799d 9±3 25.4±0.3 0.12±0.02 25±3 64±3 91±3 58±3
HR8799c 9±3 39.4±0.3 0.05±0.02 151±6 148±6
HR8799b 7±2 69.1±0.2 0.020±0.003 95±10 321±10

Model IVK at Epoch of 2004.532, må=1.52 Me, c =n 0.872 , ν=97, =pdim 5 (Figures 8–11)

HR8799e 9.4±0.5 15.45±0.25 0.127±0.011 107.5±1.5 13.7±1.5
9.426 15.45001 0.12696 107.54637 13.67259

HR8799d 8.2±0.8 25.36±0.30 0.095±0.006 26.9±2.5 79.4±3.0
8.185 25.35505 0.09540 26.94575 79.41486

HR8799c 6.9±0.5 39.78±0.40 0.048±0.005 25±2 64±5 105.8±2.0 137.2±5.0
6.857 39.77699 0.04829 25.289 64.414 105.79908 137.18943

HR8799b 6.7±0.5 67.01±0.35 0.023±0.003 120.1±3.0 235.7±5.0
6.680 67.00881 0.02297 120.07543 235.66545

HR8799fA 1.660 115.25600 0.02222 174.59807 54.13554
HR8799fB 0.660 116.43105 0.02222 174.59807 54.13554
HR8799fC 1.000 134.16610 0.02218 25.289 64.414 11.33805 327.42380
HR8799fD 0.330 133.86900 0.02218 11.33805 327.42380
HR8799fE 0.100 137.76200 0.02218 11.33805 327.42380

Model IVMCMC at Epoch of 2004.532, må=1.52 Me, c =n 0.982 , ν=74, =pdim 28 (Figure 6)

HR8799e 9.5±0.5 15.48±0.25 0.123±0.011 26±2 64±5 110.2±1.5 12.5±1.5
9.489 15.48223 0.12278 26.138 63.612 110.23990 12.49904

HR8799d 7.5±0.8 25.35±0.30 0.097±0.006 29±2 56±5 33.1±2.5 80.8±3.0
7.490 25.35133 0.09669 29.096 56.160 33.05848 80.78110

HR8799c 7.1±0.5 39.95±0.40 0.046±0.005 25±2 63±5 104.8±2.0 140.0±5.0
7.082 39.94936 0.04629 25.318 62.732 104.77760 139.98150

HR8799b 6.8±0.5 67.11±0.35 0.024±0.003 31±2 60±5 118.5±3.0 242.9±4.5
6.753 67.11155 0.02358 30.517 59.595 118.49210 242.91630

Model VA at Epoch of 1998.83, må=1.52 Me, c =n 2.712 , ν=229, =pdim 5 (Figure 7, middle and bottom rows)

HR8799e 9.450 15.45863 0.09789 115.18157 330.89613
HR8799d 6.851 25.59693 0.09300 29.67592 62.45914
HR8799c 7.121 39.78074 0.05227 26.103 60.210 101.42421 136.56084
HR8799b 8.847 70.24633 0.05055 52.58777 306.83016
HR8799f 2.500 111.48326 0.01205 140.41787 65.69502

Notes.For Model IVa, reproduced from Goździewski & Migaszewski (2014), the osculating epoch is 1998.83, and the stellar mass må=1.56 Me. Model IVK, found
in this work, is determined at the osculating epoch of 2004.532 and for the star mass of må=1.52 Me. Coplanar solutions postscripted with “A,” “B,” “C,” “D,” and
“E” extend Model IVK with a fifth hypothetical planet in a stable orbit. Model IVMCMC is a non-coplanar four-planet stable solution with small cn  12 found with the
MCMC sampling around Model IVK. These models are solutions to the measurements in Konopacky et al. (2016). Model VA is a preliminary fit to all observations
collected in Wertz et al. (2017) and found with the MCOA for a five-planet system. Uncertainties for parameters in Models IVK and IVMCMC are determined as ranges
of á ñY -stable samples yielding c <n 1.62 around their median values. Formal errors, determined as the 16th and 86th percentiles of the samples, are 2–3 times smaller.
For reference, parameter values for fits IVK, IVMCMC, and VA with five digits after the decimal point are provided, as literally used in our experiments. Parameter
n = -a d( ) pN dim, is for the degrees of freedom, where N(α,δ) denotes the number of (α, δ) measurements, and pdim is the number of free parameters.
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Monte Carlo and MCMC sampling experiments are reported by
Konopacky et al. (2016) and Wertz et al. (2017) regarding
kinematic (Keplerian) models.

We found a particularly strange discrepancy of the distribution
of the node arguments Ωi. As reported in Konopacky et al.
(2016), two Ωi peaks wide for up to a few tens of degrees are
centered around roughly ∼60° and ∼130°–150° for all planets
but HR8799d, with one much wider dominant peak around
Ωd∼100°. The first mode around ∼60° is consistent with the
outer debris disk orientation (Matthews et al. 2014; Booth
et al. 2016). However, it is missing among all single-mode
posteriors of Ωc and Ωe derived by Wertz et al. (2017). We note
here that our N-body MCMC experiments made with fixed
masses in the best-fitting solution IVK that could mimic the
Keplerian model but with Gaussian priors on the eccentricity
reveal a two-modal posterior only in Ωc, while all remaining
peaks of Ωb,d,e are found between 50° and 60°. This strongest
two-modal distribution of Ωc divided by a shallow posterior
valley might explain a low acceptance rate in our experiments.
Also, a dynamical sense of the second mode of Ωi;130°,
implying mutually inclined orbits, remains uncertain.

3.3. The MCMC Experiments and the Best-fitting Model

Our results derived in two example MCMC experiments are
illustrated in Figure 5 as 2-dim cn

2 distributions for selected
parameters. The light gray filled circles represent solutions
with c <n 1.62 , and dark gray filled circles are for samples with
c <n 0.742 , derived with uniform priors. We note that the lowest
cn  0.602 . The red filled circles mark solutions with χ<2.6 that
are á ñY -stable for ∼7000 outer periods when Gaussian priors are
set only for masses and semimajor axes. The number of illustrated
samples is ∼2×106.

Clearly, even for the very limited c <n 0.742 range, the model
parameters are practically unbounded. They vary in wide limits
both for the uniform and for the Gaussian priors. Also, the 1-dim
posterior distributions (not shown) imply that the N-body
astrometric model is unconstrained, similar to the Keplerian
models in Konopacky et al. (2016) and Wertz et al. (2017). Stable
solutions are found only relatively close to the initial resonant

configuration, and the overall shape of the stable, compact zones
agrees with the results derived with a constrained genetic
algorithm (see Goździewski & Migaszewski 2014 for details).
Here, however, the search for stable non-coplanar solutions has
been performed with an independent method.
We performed the same experiment for different choices of the

Gaussian priors (the mean values and their σμ) for masses and
orbital elements. All these attempts to find stable configurations
resulted in outputs qualitatively similar to those demonstrated in
Figure 5. We estimate that the total number of tested samples
with c <n 2.62 has reached 109 in more than 20 MCMC
experiments performed on 256 CPU cores each. We did not find
any á ñY -stable models beyond a close neighborhood of the best-
fitting, stable resonant modelIVK. Therefore, finding a stable
configuration by chance or without imposing tight or a priori
constraints on the model parameters would be extremely difficult.
Finally, the results of the MCMC sampling experiments

shown in Figure 5 are further illustrated in Figure 6. We
selected 20stable solutions with c <n 1.042 and 500 other
(unstable) models with low c <n 0.742 from the MCMC-
derived posterior samples. Their orbital arcs, marked with red
and gray curves, respectively, are overplotted on the astro-
metric data in Konopacky et al. (2016) as blue circles and all
other measurements in the literature collected in Wertz et al.
(2017) as yellow diamonds. In spite of the tight restriction,
c <n 0.742 , the gray curves span a wide region of the sky.
Moreover, stable models to a subset of data in Konopacky et al.
(2016) extrapolate very well to the full data set. We may note
the proper timing of the synthetic orbits both with the most
recent and with the earliest measurements (top middle, top
right, and bottom left panels in Figure 6).
An interesting conclusion is given in the top middle panel for

planet HR8799d. Low c <n 0.742 solutions (dark curves) are
widely spread around the Hubble Space Telescope (HST)
observation at epoch 1998.98 in Lafrenière et al. (2009).
However, stable, resonant models pass in the middle of these
solution orbits, close to the HST measurement made a few
years before. It might be a lucky coincidence, but we recall that
stable solutions are extrapolated back from the model epoch of

Figure 5. Results of MCMC experiments as 2-dim cn
2 projections of samples onto selected parameter planes. Light and dark gray filled circles mark solutions derived

with uniform priors with c <n 1.62 and c <n 0.742 , respectively. Red filled circles are for á ñY -stable models with c <n 2.62 . See Figure 6 for the sky-plane
representation of configurations selected from the illustrated samples.
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2004.532, and the HST measurement was not included in the
optimization.

One more feature of stable solutions is illustrated in the
bottom right panel of Figure 6, showing model orbits for the
two inner planets. In this panel, each of the orbits is computed
for its osculating period. Surprisingly, orbital arcs of stable
solutions for planet HR8799d do not close. It means that the
gravitational interactions may be detected even within the
narrow observational window. It is also a warning that
kinematic models that do not account for the mutual planetary
interactions may soon be inadequate on a longer time basis.

In order to summarize, we consider the results of our MCMC
experiments mostly as an attempt at determining the range of
stable islands, rather than a rigorous optimization and statistical
inference presented in Pueyo et al. (2015), Konopacky et al.
(2016), and Wertz et al. (2017). Moreover, since stability zones
are extremely tiny with respect to wide posteriors, the results of
statistically reliable MCMC sampling made with the kinematic
orbital model (without stability checks) might bring only
limited information on stable solutions.

4. The á ñY -model of Debris Disks

Having the long-term stable configurations of the system, we
may simulate debris disks in a framework of the restricted and
nonrestricted problems. In the first version, massless particles
(asteroids) are influenced by the gravitational tug of the planets
(primaries), and we assume that the asteroids do not attract the
planets or mutually interact. In the second, nonrestricted case,
hypothetical massive bodies may be added to the system of
observed planets. Such bodies may be detected indirectly
through resolving the global architecture of the observed

system. For instance, a signature of the fifth planet beyond
HR8799b may be the radius of the inner edge of the outer
debris disk (Booth et al. 2016). Also, Wilner et al. (2018)
constrained a mass of the outer planet HR8799b to ;6mJup

through modeling the inner edge with ALMA and VLA
observations. Based on the ALMA observations alone, Read
et al. (2018) deduced a mass of an additional planet, HR8799f,
beyond the orbit of planetb.
We conducted extensive Monte Carlo simulations of the

debris disks in both frameworks. The initial semimajor axis,
eccentricity, and orbital phases are drawn randomly within
prescribed ranges. These elements extend the initial condition
for the observed planets (primaries), and the resulting orbits are
integrated. We then analyze a large volume of the initial
conditions with two numerical methods.
For simulating the debris disk as the restricted problem, we

use the direct N-body integrations with the hybrid scheme in
the Mercury 6.3 package (Chambers 1999), corrected by de
Souza Torres & Anderson (2008). This approach is common in
the literature (e.g., Contro et al. 2016; Read et al. 2018). We
fixed the step size of 64days for the mixed-variables leapfrog
(MVS) and the local accuracy ò=10−13 in the BSG algorithm,
providing a relative energy error as small as 10−9.
The second numerical model makes use of the fast indicator

idea and relies on determining the stability of the test orbits
through their á ñY -signatures, following arguments in Section 3.1.
We call the approach the á ñY -model hereafter.
The results of simulations, which are osculating orbital

elements of stable systems, are projected onto the Cartesian
coordinate (x, y) plane and shown in the semimajor axis–
eccentricity (a, e) plane. It helps to reveal and identify resonant
structures in the phase space.

Figure 6. Best-fitting solution to the four-planet model illustrated at the sky plane. The y-axis corresponds to N, and the x-axis corresponds to E (note that the
numerical values of Δα are sign-opposite regarding the formal left-hand direction of the right ascension α). Blue circles are for measurements in Konopacky et al.
(2016), and yellow diamonds are for measurements in other papers, as collected in Wertz et al. (2017). Red curves mark several stable solutions with cn  12 from the
MCMC sampling. Gray curves are for orbital arcs derived from unstable models within c <n 0.742 , marginally worse from cn  0.62 for the mathematically best-
fitting N-body solutions. All model orbits have been derived for measurements in Konopacky et al. (2016) and then extended between the epochs of 1998.83 and
2014.93 in the full data set in Wertz et al. (2017). The osculating epoch is 2004.532, i.e., the first epoch in Konopacky et al. (2016).
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We conducted two CPU-intensive tests on up to 256 CPU
cores to validate the á ñY -model for the debris disk through the
direct numerical integrations. Computations are carried out for
the fixed masses of the bodies moving in the same plane.

4.1. The Restricted Four-planet System

In the first test, including four planets, we conducted a
number of Mercury 6.3 runs with up to 4096 massless
particles each. Our primary goal of this and further experiments
is to reconstruct the inner edge of the outer disk; hence, we
limit the semimajor axes to a smaller range than predicted for
the whole radius as large as ∼450au. Beyond the inner region
of the disk, filled with strong MMRs, the population of
asteroids might be determined with some quasi-analytic
distribution (Booth et al. 2016; Read et al. 2018).

In order to compare the results with findings in earlier
papers, the initial conditions of the planets in this experiment
are the same as in the best-fitting model IVa in Goździewski &
Migaszewski (2014); see also Table 1. We integrated the orbits
of primaries and massless particles for 34Myr, which may be
considered the low limit of the system age. The simulation has
been restricted to the inner part of the disk, i.e., the initial
semimajor axes a0(t= 0)ä[60, 150] au. We sampled
eccentricities e0(t= 0)ä[0, 0.33], as well as orbital phases
randomly, with v Î  [ ), 0 , 3600 0 .

The total number of particles traced with the direct N-body
integration was ;6× 105. Figure 7 shows two snapshots of the
simulation, at t= 7Myr (top left panel) and at the end of the
integration interval, t= 34Myr (top right panel). They
represent instant coordinates of massless asteroids that have
not been ejected beyond 1000 au. The final snapshot
encompasses 3.7× 105 objects surviving the integration.

The MEGNO test is illustrated in the top middle panel of
Figure 7. Almost 106 particles with á ñY are marked at the
integration time of 7Myr, which corresponds to ∼14,000
orbital periods of the outermost planet and roughly 8000
revolutions at ;100 au. Particles marked as á ñY -stable for that
interval should persist for a more than 10 times longer interval
in Lagrange-stable orbits, roughly 60–70Myr. Indeed, the
inner border of the debris disk derived with the direct
Mercury 6.3 integration looks very similar to the non-
circular oval shape revealed by the á ñY -model.

A different density of particles in the two snapshots may be
explained by a sampling strategy. In regions where the test
orbits are strongly chaotic, like just beyond the orbit of
HR8799b, the motion is á ñY -unstable during short intervals
;0.1 Myr, and the á ñY integration may be stopped as soon as
á ñ >Y 5, safely larger than á ñ Y 2 for stable systems. That
made it possible to examine huge sets of ∼108 initial
conditions, orders of magnitude larger than could be sampled
with the direct N-body integrations. Such strongly chaotic
regions are explored in a CPU-efficient way, and we argue that
the inner complex edge may be revealed in more detail with the
á ñY -model.

We also note similarly extended Lagrange islands L4 and L5
of stable particles, indicating a sensitivity of the á ñY indicator
for unstable solutions.

The á ñY -model plot at the (x, y) plane of Cartesian
coordinates may be understood as a snapshot of all possible
stable (quasi-periodic, regular) orbits of the probe masses with
various orbital phases and eccentricity for the same values of
the semimajor axis. These orbits might be populated in a real

system, but not necessarily. The actual population of asteroids
may depend on the prior planetary system history, its
migration, and the locally variable density of asteroids.

4.2. The Restricted Five-planet System

We also made a second á ñY -calibration test with essentially
the same settings but for a preliminary five-planet model of the
observations in Wertz et al. (2017) found with the MCOA. The
parameters of this solution are displayed in Table 1 as model
VA. In this model, a hypothetical, yet-undetected 2.5mJup

planet at af;111.5 au forms the 16e:8d:4c:2b:1f MMR chain
with the observed planets. The test particles were integrated
with the Mercury 6.3 code for an interval of 68Myr, even
longer than before, but for the same interval of 7 Myr with the
μFarm MEGNO code.
The results are shown in the bottom row of Figure 7. We

sampled asteroid orbits with a0(t= 0)ä[60, 220] au and
e0ä[0, 0.4], implying the initial orbits up to the collision zone
with the orbit of planetf. Also in this case, although the
á ñY -interval is relatively short, the results of the direct N-body
integrations and from the Monte Carlo á ñY -sampling closely
overlap. Even subtle structures, such as a narrow arc made of
particles opposite the position of HR8799b, are clearly present
in the last two panels. Also, the overall egg-like shape of the
inner edge looks the same. Initially massive L4 and L5
Lagrangian clumps of asteroids in the bottom left panel are
finally reduced to smaller, dispersed islands with similarly wide
centers, as seen in the bottom right panel. These islands appear
as much more compact structures in the á ñY -model plot (bottom
middle panel). This implies that particles initially forming a
kind of echo around L4 and L5 corotation centers in the direct
integration plot (bottom left panel) are secularly unstable. They
are eventually removed from the system.
We projected the Keplerian elements of the test particles at the

(a0, e0) plane, as shown in the bottom row of Figure 7. The
distribution of the elements derived with short-termá ñY -integrations
(bottom middle panel) closely matches with the data after 68Myr
found directly with the Mercury 6.3 code. We note a two-modal
structure of the 1:1 MMR (bottom middle á ñY panel), which
has been detected with a dense sampling of the particles. The
distribution of elements appears diffuse due to their representation
in the common astrocentric Keplerian frame (Lee & Peale 2003). It
hinders the true resonant structure of the disk, and we address this
issue further in Sections 6 and 7.
One should be aware that the á ñY -model is in regard to the

short-term resonant dynamics (e.g., Laskar & Robutel 2001),
and the relatively short integration times may not be sufficient
to resolve long-term secular resonances present in all systems
with more than two planets (e.g., Morbidelli 2002). However,
since the obtained á ñY -distribution of elements overlaps with
the results of the direct N-body integrations, the dynamical
effects of the secular resonances are either nondetectable during
∼70Myr or overlap with the short-term MMR dynamics.

5. The Inner Disk Dynamical Structure

In order to even better validate the á ñY -model, we compared
its outcomes with the results in a recent work by Contro et al.
(2016), regarding the inner debris disk in the HR8799 system
(Reidemeister et al. 2009; Su et al. 2009; Hinkley et al. 2011;
Matthews et al. 2014). Its structure is not yet fully resolved.
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We conducted experiments for a varied mass of test particles:
small, essentially massless asteroids of m0=10

−15mJup, a super-
Earth with mf=10 MEarth, and an mf=1mJup Jovian planet. We
investigated a zone beyond 4au from the star up to 2au beyond
the inner orbit of HR8799e (;17 au) and orbits with e0,fä[0,
0.4] roughly within the collision zone with the orbit of planete. As
before, we aim to resolve the outer edge of the disk, which is
carved by the closest planet and the whole system indirectly,
through the coupled resonant motion. The initial conditions for the
primaries are the same as in our new astrometric model IVK

(Table 1).
The results are illustrated in Figure 8. In all panels, the

innermost planet HR8799e is marked with a filled circle.

The left-hand column of panels is for the restricted problem.
The orbits of planets HR8799e,d are sampled and marked with
gray dots for the integration interval of 3Myr. That corresponds
to 40,000 revolutions of the innermost perturber HR8799e and
more than 4000 revolutions of the outermost planetb. The (x, y)
plots, representing stable orbits at the initial osculating epoch, are
accompanied by the final distribution of the astrocentric Keplerian
elements in the (a0, e0) plane for massless objects and the (af, ef)
plane for non-zero-mass planets (the two remaining columns).
Although the mass of the fifth body is varied, the inner disk

reveals similar features determined by low-order MMRs with
the innermost planete. By including massless particles with
moderate eccentricities e0ä[0, 0.4] in the initial distribution,

Figure 7. Top row: outer debris disk of the four-planet HR8799 system, in accord with model IVa in Goździewski & Migaszewski (2014). The left-hand and right-
hand panels show snapshots of the astrocentric coordinates (x, y) of massless asteroids at the orbital plane at times ;7 and ;34 Myr, respectively, derived with the
direct N-body integrations conducted with the Mercury 6.3 package (the hybrid scheme). Filled circles are for the positions of the planets, and light gray curves are
orbital arcs sampled for the time span ;34 Myr. The final snapshot involves 370,000 massless particles that survived the integration. The middle panel shows the
astrocentric coordinates (x, y) of ;106 test particles with masses 10−15mJup in á ñY -stable orbits. Middle row: outer debris disk of the five-planet HR8799 modelVA

(Table 1). The left-hand and right-hand panels show snapshots of the astrocentric coordinates (x, y) of massless asteroids at the orbital plane at motion times ;7 and
;68 Myr, respectively. Planet orbits are sampled and marked with gray dots for ;68 Myr. The final snapshot involves 125,000 massless particles that survived the
integration. The middle panel is for astrocentric coordinates (x, y) of ;1.5×106 test particles with masses 10−15mJup in á ñY -stable orbits. Integrations were done with
the μFarm package. Bottom row: osculating, astrocentric Keplerian elements of the massless particles in the (a0, e0) plane in the five-planet model (middle row). The
light gray curve marks the collision curve with planet HR8799e. Approximate positions of low-order MMRs with this planet are labeled.
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we obtain a highly asymmetric shape of the outer parts of the
disk, with large Lagrangian L4, L5 clumps accompanied by
complex structures of the 3:2MMR with the innermost
planete. We note that the overall border of the disk edge is
different from that found by Contro et al. (2016), who also
mapped the phase space with the á ñY -indicator. By fixing the
initial phases of the asteroids in 2-dim scans, one obtains
nonexhaustive representation of stable regions. For instance,
the 3:2 MMR is missing at the (a0, e0) scans shown in Contro
et al. (2016).

The á ñY -model is also useful to “predict” the positions of a
hypothetical innermost, yet-undetected fifth planet“f” in the
system. Such a body has been considered an explanation of the
observed spectral energy distribution (SED) in Su et al. (2009)
and Hinkley et al. (2011). In Goździewski & Migaszewski
(2014), we simulated such a body with the MCOA algorithm,
and we found a few possible locations of the missing planet
associated with low-order 2:1 and 3:1MMRs with HR8799e.
However, the gravitational influence of such a hypothetical

planet on the inner companion HR8799e could hardly be

Figure 8. Inner debris disk (left column) and possible orbits of the yet-undetected innermost planet HR8799f (middle and right columns) in model IVK at the initial
osculating epoch 2004.532. Panels in the top row are for instant astrocentric (x, y) coordinates for different masses of test bodies in stable orbits. The left column is for
10−15 mJup, the middle column is for 10 MEarth, and the right column is for 1 mJup. A filled circle marks the initial position of the planet HR8799e. Light gray dots in
the top left panel illustrate the orbits of two inner planets sampled for the integration time of 3Myr. For reference, light blue disks in the next two panels mark the
nominal periastron and apastron distance of HR8799e. Panels in the middle row are for the (a0, e0) or (af, ef) planes of the initial Keplerian elements with labels
identifying low-order MMRs with the innermost planet HR8799e. Panels in the bottom row are for the (x, y) coordinates rotated to the sky plane, in which the y-axis
corresponds to N and the x-axis corresponds to E (note that the numerical values of Δα are sign-opposite with respect to the formal left-hand direction of the right
ascension α). Astrometric observations in Konopacky et al. (2016) are marked with filled circles, and other measurements listed in Wertz et al. (2017) are marked with
diamonds. Several models selected from the MCMC sampling are marked with red (stable, cn  12 ) and gray (unstable, c <n 0.742 ) curves. For reference, the positions
of planets HR8799c,d,e at the initial epoch of 2004.532 are marked with star symbols. Note the variability of unstable models, in spite of relatively small cn

2.
Snapshots in subsequent panels illustrate ∼250,000, ∼240,000, and ∼220,000 á ñY -stable orbits, respectively, for 3Myr (;6 × 104 and ;3 × 104 revolutions of the
two closest perturbers, HR8799e,d).

13

The Astrophysical Journal Supplement Series, 238:6 (21pp), 2018 September Goździewski & Migaszewski



detected through deviations of astrometric measurements,
given short orbital arcs and relatively large uncertainties. We
can simulate potential locations of the hypothetical planet more
efficiently with the á ñY -model, attributing nonzero mass to the
“asteroids.” We conducted such experiments for mf=10 Earth
masses and mf=1mJup (middle and right columns of Figure 8,
respectively). The most noticeable phase-space structures are
preserved and look similar to the restricted case. The additional
putative planet should be involved in two-body MMRs with the
inner observed planet HR8799e at orbits down to af;6 au. It
also means that the four-planet model is robust against
perturbations. These predictions overlap with our earlier
simulations in Goździewski & Migaszewski (2014).

We note that attempts to detect or dismiss the hypothetical
inner fifth planet have failed so far. This planet is below
detection limits due to small mass or too-close proximity to the
star and insufficient contrast (Skemer et al. 2012; Matthews
et al. 2014; Maire et al. 2015; Zurlo et al. 2016).
The bottom panels in Figure 8 are for the sky-projected

snapshots of stable orbits at the initial epoch of 2004.532
(marked with stars), overplotted with several model orbits from
the MCMC sampling and all measurements in Wertz et al.
(2017). These plots might be useful in interpreting the direct-
imaging observations. Down to ;7–8au (;0 2), the “miss-
ing” planet may be found in discrete, isolated islands associated
with 3:2, 2:1, 5:2, and 3:1 MMRs with planete. Below that

Figure 9. The á ñY -model simulations of localizations of a putative planet HR8799f in the outer region of the system. Subsequent panels show astrocentric coordinates
(x, y) of stable orbits in the orbital plane (top row), a distribution of the Poincaré canonical orbital elements (af, ef) (middle row), and a projection of the instant
coordinates at the sky plane relative to the observed system (filled circles) and several four-planet synthetic orbits from the MCMC sampling, marked with red and
gray curves for stable and unstable models, respectively. The y-axis corresponds to N, and the x-axis corresponds to E (note that the numerical values of Δα are sign-
opposite with respect the formal left-hand direction of the right ascension α). Columns are for different masses of the putative planet of 0.1, 1, and 1.66 mJup. Light
gray curves in the middle row indicate the collision curve for planet HR8799e and test objects. Integrations are done with the μFarm package with the MEGNO
indicator for 9and 10Myr. Gray rings in the top panels illustrate the sampled orbits of the observed planets for the integration time. The snapshots show up to
2×105 objects in á ñY -stable orbits. The reference epoch 2004.532 is the date of the first observation in Konopacky et al. (2016).
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limit, it could persist essentially everywhere in a wide ring
around the star.

6. The Outermost Planet V Hypothesis

The inner edge of the outer cold debris disk has been detected
at 145au, hence much farther than the ;90 au that could be
explained by the gravitational pull of planet HR8799b (Booth
et al. 2016; Read et al. 2018). With the same framework and
orbital model IVK of the primaries as in the previous section
regarding the inner disk structure, we aim to investigate locations
of a hypothetical fifth planet, HR8799f, exterior to HR8799b.
We computed the á ñY -model for a few choices of the mass mf of
the putative planet. The results are illustrated in Figure 9 for
mf=0.1, 1, and1.66mJup, respectively, and we made a similar
experiment for mf=2.5mJup (not shown).

The top row in Figure 9 illustrates possible stable positions of
HR8799f in the orbital plane at the initial epoch of 2004.532.
Again, it should be understood as a representation of the initial
conditions implying stable evolution of the system, rather than a
physical disk. The distribution of orbits is very similar to that
derived for massless or low-mass asteroids shown in Figure 7. In
order to understand the dynamical structure of this quasi-disk,
we also plotted the same orbits projected onto the (af, ef) plane
(middle row), where af and ef are the canonical Poincaré
elements (Morbidelli 2002; Goździewski et al. 2008). This
parameterization of the orbital elements is critical to “disen-
tangle” the structure of MMRs. Otherwise, a classification of
orbits is obscure with the common Keplerian astrocentric
elements due to significant variation of the osculating semimajor
axes of the outer planets (for instance, Lee & Peale 2003); see
also the bottom row in Figure 7.

As can be deduced from Figure 9, a Neptune-mass planet
could belong to a stable system when involved in a low-order
two-body resonance with HR8799b, like the 1:1, 3:2, 5:3, 2:1,
and 5:2 MMRs. In that instance, the eccentricity of the fifth
planet could be as large as ef;0.3. It might be found at
essentially any location at the sky (see the bottom row) beyond
the angular distance roughly equivalent to the semimajor axis of
af;90 au. Also, two Trojan 1:1MMR locations are possible. A
similar, extended, yet more sparse and clear pattern of the MMRs
is present for a larger mass of 1mJup (middle column), as well as
for 1.66mJup (right column) and 2.5mJup (not shown).

7. The Outer Debris Disk Structure

Finally, we conducted á ñY -model simulations for a few copies
of the HR8799 best-fitting solution, model IVK in Table 1,
involving the fifth planet with different masses and the initial
semimajor axis. As shown in the previous section, such a planet is
weakly constrained by the present astrometry. However, recent
observations of the outer disk imply conjugated constraints for its
structure, as well as for the possible orbit and mass of this putative
object.

We aim to simulate the outer disk composed of probe masses
m0 set to 10−15mJup in further experiments. After selecting a
mass and orbital elements of the fifth, additional planet HR8799f
from simulations described in Section 6 and illustrated in
Figure 9, we verified á ñY scans in the (af, ef) plane. We checked
whether its stability zone is sufficiently wide to avoid biases due
to a proximity to unstable resonances. When necessary, the
semimajor axis af has been slightly modified to separate it safely
from all nearby unstable MMRs. The orbital elements of the

primaries selected for computations are gathered and labeled in
Table 1 as HR8799fA to HR8799fE, complementing model
IVK. We tested orbits with the initial a0,kä[60, 240] au and
eccentricities e0,k=[0,∼0.5) below the collision curve with the
outer planet. (For the massless particles, we distinguish the
Poincaré canonical elements (ap, ep) from (a0, e0)≡(ak, ek)
denoting common Keplerian astrocentric elements.)
The first set of simulations is illustrated in Figure 10. Here

we essentially repeated the á ñY -calibrating experiment in
Section 4 but to determine the edge of the outer disk with
the updated model IVK. The (x, y) snapshot of stable orbits at
the initial osculating epoch of 2004.532 is now complemented
by the (ap, ep) plane for the canonical Poincaré elements of the
orbits of test particles at the end of the integration interval of
10Myr, extended to more than 104 orbits at ∼100 au. The
integration time implies that orbits characterized as á ñY -stable
should be Lagrange-stable for ;100Myr. The (x, y) orbits are
coded in a color-scale representing their initial Keplerian
astrocentric eccentricity ek. This provides additional informa-
tion on the distribution and geometry of stable orbits at the
initial epoch of 2004.532.
The (x, y) orbital plane shown in the top left panel in

Figure 10 reveals similar features to those seen in Figure 7
(top row). The shape of the inner edge of the disk, resembling a
fat peanut, is strongly distorted by the orbits of asteroids in
the 3:2 and 5:3 MMRs with HR8799b. They may be easily
identified in the (ap, ep) plot. There are also large islands of
stable particles corotating with the L4, L5 Lagrangian points of
planet b. They extend for wide arcs as long as ;40 au. The
short-term dynamics in the 100Myr timescale is apparently
governed by the major gravitational pull of HR8799b, since
stable orbits are possible essentially only below the collision
curve ep(ap), marked in the bottom row in gray. This curve is
determined from ab (1+ eb);ap (1−ep). Some proportion of
the asteroids might move on moderately eccentric orbits up to
ep;0.4 when trapped in low-order MMRs.
The two next columns in Figure 10 are for five-planet

systems with planet HR8799fA of mass mf= 1.66mJup and
planet HR8799fB of mass mf= 0.66mJup, respectively (see
model IVK in Table 1). The semimajor axis af∼116 au,
forming the 16e:8d:4c:2b:1f MMR chain, is almost the same in
both experiments. These configurations address the inner edge
at ;145 au, as detected in Booth et al. (2016). Indeed, for mf=
1.66mJup, stable orbits exhibit semimajor axes ap> 140 au,
beyond the Lagrangian L4, L5 zones, with two strongly
resonant regions of the 3:2 and 2:1 MMRs with planet
HR8799f. A similarity of the (x, y) distribution with the results
in the middle panels of Figure 7 is striking. The inner edge
would be strongly distorted by moderately eccentric orbits
ep;0.2 associated with the 3:2 MMR. A ring of eccentric 2:1
MMR orbits with ap;150 au is marked with reddish points in
the top middle panel. The Lagrangian zones are much wider
than in the four-planet configuration (panels in the left column
of Figure 10) and extend along arcs of ∼100 au, contributing to
an even more noncircular and asymmetric inner edge of
the disk.
An even more complex inner shape appears for smaller mass

mf= 0.66mJup of the hypothetical planet HR8799f at af ; 116 au
(right column). While the inner edge in the (ap, ep) plane is similar
to the m= 1.66mJup case, now the 4:3MMR is populated with
more particles. Also, the Lagrange zones are more extended, and
moderately eccentric orbits in the 4:3MMR form two clumps
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opposite the planet at distances equal to its mean heliocentric
semimajor axis af. Other features of the asteroid distribution are
similar to the previous case.

We also considered an orbital setup with the outer planet f
beyond ;130 au, as predicted by the disk models in Booth
et al. (2016) and Read et al. (2018). Due to the larger
semimajor axis of the perturber, the á ñY -integration time has
been increased to 12Myr (∼104 orbits of the outermost
perturber at ∼130 au). We investigated three cases with mf= 1,
0.33, and 0.1mJup, illustrated in the columns of Figure 11.
While the overall shape of the disk is roughly similar to that of
the previous models, new features appear. The inner edge
becomes more and more distorted from a circle for decreasing
masses mf. Simultaneously, clumps of stable orbits associated
with the Lagrangian equilibria develop into a state in which
they are merged with the inner edge at the mean distance equal
to the semimajor axis af. Also, the low-order MMR zones are
even better isolated; hence, the inner edge up to ;220 au is
strictly resonant.

The most complex image of the inner border of the disk has
been found for the smallest mass of mf= 0.1mJup, placed at
af;138 au. This particular configuration follows the best-fitting
solution explaining the recent ALMA observations in Read et al.
(2018). The resonant structure associated with this planet is also
very sharp, yet some particles may survive in stable, resonant
orbits between planets HR8799b and HR8799f. We did not find
such orbits for mf= 0.33mJup (not shown), although planet f is
shifted by only ;5 au. The inner resonant orbits are associated
with 1:1, 3:2, and 5:2MMRs with planet HR8799b. In both

zones, the eccentricities might be excited beyond collision curves
with planets HR8799b and HR8799f.

8. The Debris Disk under Migration

The resonant nature of the four-known-planet configuration
might result from the migration due to the planet–disk
interactions. Including this process in the debris disk formation
scenario may potentially shift the border with respect to the
results of the previously studied models, in which all the
planets are statically placed at their current orbits together with
a disk of the massless particles. We therefore aim to investigate
whether migration of the planets might place the inner edge of
the outer debris belt at ∼145 au. Then the requirement for an
additional planet outside the orbit of planet b could be released.
While the analysis is preliminary, it might offer an alternative
scenario for explaining the ALMA observations.
We assume that the planets are initially located outside their

current positions, and they undergo the inward convergent
migration that is supposed to form a chain of 2:1MMRs. We use
the same model of the planet–disk interactions as used before and
described by Equation (1) but with κ the same for all planets.
Although the massless particles are too small to undergo the

type I migration, they could, in principle, “feel” the gas drag
(Adachi et al. 1976). The timescales of the orbit decay that
results from the drag depend strongly on the particle masses, as
well as on the gas densities (the volume densities, not the
surface densities, as for the type I and type II migration).
Assuming that the surface gas density ∝r−3/2 and the total gas
mass within the (10, 100) au range equals 1mJup when we start

Figure 10. Inner part of the outer debris disk of the four-planet (left column) and five-planet systems (middle and right columns). Orbital elements of the fifth planet,
complementing model IVK, are listed as HR8799fA and HR8799fB in Table 1. Subsequent panels in the top row show astrocentric coordinates (x, y) of asteroids in
á ñY -stable orbits for different masses of a hypothetical companion HR8799f at the initial epoch of 2004.532. Panels in the bottom row are for the canonical Poincaré
elements (ap, ep) of these stable solutions at the end of the integration interval of 10Myr. Gray lines are for the collision curve of orbits with planet HR8799f. The
low-order MMRs with planet HR8799f are labeled in the bottom panels. Osculating initial orbital eccentricities ek at the initial epoch are color-coded in the top row.
Snapshots in subsequent panels illustrate ∼920,000, ∼580,000, and ∼910,000 á ñY -stable orbits.
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the simulation, the volume gas density would be in the range of
10−14 to 10−15 g cm−3, depending on the assumed aspect ratio
between 0.01 and 0.1. For particles larger than a meter, the
characteristic timescale of the orbit decay induced by the gas
drag would be greater than the age of the system and the
migration timescales assumed for the planets that are ∼10Myr.
Therefore, we neglect the migration of the massless particles in
this model.

We performed a series of simulations for different initial
orbits and the migration parameters. We assume that the
resulting system has to be resonant and of a similar size as the
observed configuration, and the inner edge of the massless
particle disk has to place in the range of (145± 12) au, as
determined by Booth et al. (2016). These constraints do not
permit for very wide initial orbits, since the resulting inner edge
would be placed outside the observed border. On the other
hand, all the pairs of planets need to be located outside
2:1 MMRs, as the resonances are formed in the process of the
convergent migration. Moreover, the innermost planet should
start the migration beyond its current position at ∼15.5 au.

All the constraints given above limit the initial orbits
significantly. After a series of experiments, we found an initial
configuration and the migration parameters that fulfill the
criteria. The evolution of the four-planet system into the
resonant configuration is shown in the left-hand column of
Figure 12. The initial semimajor axes and other parameters are
given in the caption of the figure. The outermost planet starts
the migration at 90 au and the innermost one at 17.5 au. The
migration timescales between 9 and 28Myr (from the outer-
most to innermost planets), together with the disk decay

timescale of 1 Myr, make the planets migrate inward by a
distance of ∼20 au for the outermost and ∼2 au for the
innermost planets. The resonance (with a low-amplitude
libration of the resonant angle) is formed after ∼1Myr of
evolution; therefore, the final system of four planets is long-
term stable.
The process of the resonant chain formation needs a

comment. Entering into the resonant chain of four planets is
a chaotic process; therefore, even small changes in the initial
configuration, as well as differences between the numerical
integrators used to solve the equations of motion, may lead to
different results. For instance, the resonance may not be
achieved, resulting in further self-disruption of the system. This
is why the evolution shown here has to be treated as an
example configuration. Initial configurations different from the
one presented, as well as different migration parameters, may
lead to qualitatively similar results.
Apart from the planets, there are a number of massless

objects included in the model whose motion is being perturbed
by the planets. Their final distribution after 10Myr of the
integration is shown in the middle and right columns of
Figure 12. We chose a uniform distribution of the particle
semimajor axes ranging from 15 to 429 au (the latter is the
outer edge of the debris belt found by Booth et al. 2016). Initial
eccentricities of the particles range from 0 to 0.03 (middle
column) and from 0 to 0.3 (right column); all the angles are
chosen randomly in the whole range of (0°, 360°). The final
number of objects that remained in the system was ∼105 in
each case. The inner edge of the asteroid belt places itself at
∼145 au for both ranges of the initial eccentricities. The border

Figure 11. Inner part of the outer debris disk of the five-planet systems and different masses mf=1, 0.33, and 0.1 mJup of a hypothetical fifth planet beyond the orbit
of HR8799b. Orbital elements of the fifth planet, complementing model IVK, are listed as HR8799fC, HR8799fD, and HR8799fE in Table 1. A mass of this
additional planet is labeled in the bottom panels. Subsequent panels in the top row show astrocentric Cartesian coordinates (x, y) of asteroids at á ñY -stable orbits for
different masses mf of a hypothetical companion HR8799f, labeled in subsequent bottom panels, at the initial epoch of 2004.532. Panels in the bottom row are for the
canonical Poincaré elements of these stable solutions at the end of the integration intervals of 10 and 12Myr. Gray lines are for collision curves of orbits with planets
HR8799f and HR8799b (right column). Low-order MMRs with planets HR8799f and HR8799b are labeled. Osculating astrocentric eccentricities ek at the initial
epoch are color-coded in the top row. Snapshots in subsequent panels illustrate ∼980,000, ∼635,000 and ∼500,000 á ñY -stable orbits, respectively.

17

The Astrophysical Journal Supplement Series, 238:6 (21pp), 2018 September Goździewski & Migaszewski



is sharper for the simulations with initial e< 0.03. Moreover, in
this case, there are spiral waves in the disk, while when initial
e< 0.3, the disk is axially symmetric.

In both cases, there is a small number of objects inside
145 au that results from nonrectangular radial distribution of
the asteroids. We fine-tuned the initial orbits of the giant
planets in such a way that at the distance of 145 au, the radial
density of the object equals approximately half of the radial
density in the plateau region of the radial distribution. The
border defined in this way can be easily controlled when the
model with migration is applied, simply by shifting the initial
positions of the planets, as most of the asteroids are being
removed from the system shortly after the beginning of the
simulation, when the giant planets are still close to their initial
positions.

9. Discussion

Our results are derived under the major assumption that the
orbital models of the HR8799 systems are resonant, and the
strong, zeroth Laplace MMR chain is likely the primary factor
maintaining the long-term stability. However, some recent
results in the literature might contradict this assumption, which
possibly requires a comment.

Recently, Götberg et al. (2016) proposed long-term Lagrange-
stable solutions found by tuning the initial orbital separations
between the planets in terms of the Hill radii spacing (Chatterjee
et al. 2008). These long-living models are reported as nonresonant,
strongly chaotic, and prone to tiny changes of the initial conditions
and a numerical scheme.

We examined system 94 (simulation 4e) in the Appendix of
the source paper, given in the form of Cartesian astrocentric
coordinates. The frequency analysis of this solution reveals that

it exhibits alternating rotations and librations of a critical
argument of the three-body MMR 2d:-5c:1b (Figure 13). This
feature indicates the separatrix crossing. We also did 2-dim
á ñY -scans in the (ae, ee) plane, close to this solution (not
shown), which reveal a dense net of other narrow multibody
MMRs in this region around ae;14.3 au. The scans might be
helpful to select other marginally stable solutions associated
with narrow three- and four-body MMRs of higher orders.
The results of Götberg et al. (2016) are consistent with our

simulations in the sense that they indicate a marginal stability
of the system. It may be long-living only in very narrow
stability regions in the phase space associated with various
multibody MMRs. A resonance mechanism protecting the
system from close encounters must be acting for the present
planetary mass estimates, though the orbital evolution may be
chaotic and marginally stable, as we also argue in Goździewski
& Migaszewski (2009, 2014) and this work.
A determination of the Hill radii separation through

semimajor axes expressed in the astrocentric reference frame

Figure 12. Left column: evolution of an example initial configuration that ends up as a system resembling the configuration of HR8799. Initial semimajor axes are
a1=17.5, a2=30, a3=52, and a4=90 au. All eccentricities and arguments of pericenters are initially 0. Mean anomalies are chosen to be 0°, 90°, 180°, and 170°
from the innermost to the outermost planets. The migration parameters are T=1Myr, κ=200, and respective timescales of migration τ1=28, τ2=18, τ3=12,
and τ4=9Myr. The masses are the same as in solution IVa in Goździewski & Migaszewski (2014; see also Table 1), i.e., må=1.56 Me, m1=m2=m3=9 mJup,
and m4=7 mJup. The top panel presents the evolution of the astrocentric distances of the planets, while the bottom panel illustrates the evolution of the resonant angle
of the double Laplace resonance, i.e., θ=λ1−2λ2−λ3+2λ4. Middle and right columns: final distribution of asteroids after 10Myr of evolution. The top panels
present the positions of the asteroids in the orbital plane (dots), together with the positions of the planets (open circles). Gray rings show the temporal positions of the
planets integrated over 100Myr after the migration stops. The black circle indicates the inner border of the outer debris disk of HR8799 found in Booth et al. (2016),
i.e., 145 au. The bottom panels present histograms of the asteroids’ astrocentric distances. Vertical lines indicate the debris disk border (solid line) and the uncertainties
(dashed lines), i.e., (145 ± 12) au. The initial asteroids’ eccentricities were chosen from the ranges of [0, 0.03] (middle column) and [0, 0.3] (right column).

Figure 13. Temporal evolution of a critical argument θ of the three-body 2d:-
5e:1bMMR of system 94, simulation 4e in Götberg et al. (2016; their
Appendix). A sequence of alternating librations and rotations implies separatrix
crossings and strongly chaotic evolution of the system.
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may be nonunique. For instance, the semimajor axis of
HR8799b in model 94 (simulation 4e) in Götberg et al.
(2016) varies within 10 au, depending on the orbital phase,
although the orbit has been initially set almost circular. It may
be explained by indirect perturbations in the astrocentric frame;
see Lee & Peale (2003) for details, as well as this work,
regarding identification of MMRs in the outer debris disk
(Sections 6 and 7). The osculating period of HR8799b
simultaneously varies between roughly 450 and 550 yr,
hindering the proper identification of the MMRs. The
identification is much easier in the canonical reference frame.
In that frame, the N-body dynamics may be approximated to
first order in the masses through the Keplerian orbits perturbed
by the mutual interactions between the planets (e.g.,
Malhotra 1993).

A choice of the astrometric model is one more subtle, yet
crucial factor for determining the long-term stable solutions. By
reproducing the observations with Keplerian orbits, we dismiss
information on the planet masses. Apparently, the mutual
interactions should not be a significant factor for resolving the
orbital geometry, given that the observed arcs are at most
∼12% of the full orbits. However, the masses are critical for
determining the dynamical interactions in the system; hence,
skipping this prior seems to be inconsistent with the Bayesian
inference. Even rigorously stable N-body models exhibit orbits
that do not close after just one osculating period, due to fast
precession (Section 3). Unstable models that are marginally
worse from mathematically best-fitting solutions are uncon-
strained and represent widely open arcs during only one
osculating period (Figure 6). These arguments indicate that the
kinematic (geometric) models may already be biased, in spite
of the short-arc measurements coverage.

10. Summary

In the first part of the paper, we present an updated
astrometric model of the HR8799 planetary system. If the
masses of detected planets are in the range of a few Jupiter
masses, the system is strongly unstable in a 1Myr timescale. It
is still a very short interval of time when compared to the star
age, estimated to be between 30 and 160Myr. Simulations of
its dynamics conducted so far reveal that the long-term stable
orbital architectures of the system must be confined to small
and particular regions in the phase space. We attempt to solve
this paradox by assuming that the HR8799 system is involved
in a two-body MMR chain or a multiple, three- or four-body
MMR. Since the orbital parameters of a stable, resonant
configuration are not independent and coupled, the number of
free parameters of the astrometric model may be reduced to
only five. This makes it possible to find stable solutions
consistent with astrometric measurements and mass estimates
derived from the planet formation and cooling theory.

While the original version of this optimization method was
developed earlier, in this work, we propose a structured and
CPU-efficient algorithm that consists of two independent steps.
At the first stage, we build a database of stable configurations
by simulating the planetary migration process. These synthetic,
coplanar systems may agree only roughly with the spatial
dimensions of the observed system. The second step performed
with evolutionary algorithms is for fine-tuning these systems
through linear scaling, rotations of the orbits in space, and
propagating the bodies along their orbits with the N-body code

to the proper, observed positions. We note that during the latter
step, the elements may change self-consistently, in accord with
the N-body evolution.
This approach led us to finding the best-fitting model with

cn  12 , which corresponds to the MMR chain of a generalized,
four-body Laplace resonance. This solution to a subset of self-
consistent astrometric measurements in Konopacky et al. (2016)
extrapolates to all observations to date and preserves the correct
timing. In particular, the extrapolated orbit of planet HR8799d
passes close to the first HST observation in 1998 (Lafrenière
et al. 2009). Solutions unconstrained by the migration are
widespread, in spite of much smaller c ~n 0.742 , only marginally
worse than the mathematically best-fitting configuration yielding
c ~n 0.62 . It may be a strong argument supporting our resonant
model. Also, the mutual gravitational interactions between the
planets are apparent, since the best-fitting N-body orbits may
collide in a timescale of a few revolutions. That causes concern
regarding kinematic models that do not account for the mutual
interactions between the planets.
In the second part, we used the stable best-fitting initial

conditions for simulating the dynamical structure of debris
disks in the system. We developed CPU-efficient sampling of
the initial conditions with the fast indicator MEGNO, dubbed
the á ñY -model. This dynamical model also makes it possible to
locate additional, relatively massive objects in stable orbits,
representing yet-undetected planets in the system. The
HR8799 system of four planets involved in the Laplace
8b:4c:2d:1e MMR is surprisingly robust for relatively strong
perturbations introduced by such additional objects in the
1–3mJup range. Such unknown planets may be found interior
or exterior to planets HR8799e and HR8799b, respectively,
and extending the MMR chain to five or more planets.
With the á ñY -model, we simulated the debris disks composed

of small asteroids. The structure of these disks is represented by
temporal coordinates in the orbital plane, as well as by the
canonical Keplerian elements in the (ap, ep) plane. The
simulations ended up with ∼106 particles and revealed regions
that may be populated by asteroids or small planets in stable
orbits. The total number of tested initial conditions was 1–2
orders of magnitude larger when counting unstable solutions.
The á ñY -model was calibrated with the long-term, direct
numerical integrations performed with the standard Mercury
6.3 code. The results for the four- and five-planet restricted
problems derived with the direct numerical integrations for
34–68Myr closely overlap with outcomes from the á ñY -model
traced for much shorter intervals of 7–12Myr.
The outer edge of the inner disk is shaped mostly by the inner

planet e. A border of stable motions may be roughly determined
by the collision zone with this planet. Close to its orbit, stable
orbits are permitted only when asteroids or small-mass objects are
trapped in low-order MMRs. The overall image of this zone is
similar for a range of masses, between 10−15 (small asteroids) and
1mJup (Jovian planets). By allowing for the initial eccentricities of
the test bodies up to the limit determined by collisional orbits, we
detected stable resonances, like 3:2 and 1:1 MMRs missing in
earlier papers (Contro et al. 2016). The presence of a significant
proportion of asteroids in these resonances may contribute to the
highly nonsymmetric edge of the inner disk.
We also conducted CPU-intensive simulations of the outer

disk, focusing on its inner edge and the inner part. Recently, it
has been resolved with the ALMA observations in band 6
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(1.34 mm) by Booth et al. (2016) and combined ALMA and
VLA observations by Wilner et al. (2018). They found the
inner edge at 145±12 au and -

+104 au12
8 , respectively.

Extensive follow-up simulations by Read et al. (2018) focused
on the fifth, undetected planet carving the outer disk, to be
consistent with the model of Booth et al. (2016). Their best-
fitting model predicts a small 0.1mJup planet at ;138 au.
However, a different model in Wilner et al. (2018) may explain
the ALMA and VLA observations with the currently observed
four-body system. They also constrained a mass of planet
HR8799b to -

+5.8 3.1
7.9 au.

We reconstructed the inner part of the disk composed of low-
mass particles (asteroids) under different dynamical conditions
covering scenarios in these three papers in the framework of the
four- and five-planet restricted problem.

The inner edge is mostly influenced by the outermost planet.
The simulations ended up with 106 bodies in stable orbits. The
inner part of the outermost disk is spanned with various MMRs
with this planet, including the 1:1 MMR and extended corotation
zones. The width of these zones depends on the outermost planets’
mass and may extend for ∼100 au. A border of the stability region
beyond the orbit of the outermost planet HR8799b is determined
by the collision zone with this planet. Low-order resonances, like
the 4:3, 3:2, and 2:1MMRs, force the eccentricity of the asteroids
to moderate values. If these stable, moderate-eccentricity regions
are populated, then the inner edge may exhibit a very complex
shape. It turns out to be more asymmetric for smaller masses of the
outermost planet. We found the most complex edge for 0.1mJup at
∼138mJup, predicted in the best-fitting model to the ALMA
observations in Read et al. (2018).

We note that in papers modeling the ALMA data, the edge is
axisymmetric with inclusion of the Lagrangian clumps
appearing as unimportant for the final results. However, our
simulations indicate that the inner edge may be irregular, and
particularly the 1:1 MMR zones overlapping with eccentric
orbits in 3:2 and 4:3 MMRs may produce extended regions of
emission. For instance, a 0.33mJup planet placed at ∼134 au
would be responsible for maintaining two huge Lagrangian
clumps spanning approximately 120× 30 au each. A smaller
planet of ∼0.1mJup beyond ∼135 au might permit a complex
structure of stable motions interior to its orbit and confined to
low-order MMRs with HR8799b.

Finally, we tentatively simulated the migration of the four
observed planets in the presence of an extended asteroidal belt.
We assume that the planets migrate to the final state of the
8b:4c:2d:1e Laplace resonance and influence the asteroids. In this
most complex astrophysical scenario, the disk edge may be
moved to a “desired” location by appropriate migration rates and
initial configuration of the planets. In such a case, no additional
planets would be necessary in order to explain the ALMA
observations. These simulations have a dynamic character,
contrary to the static case considered in previous experiments.
However, the static-type simulations made with the observed four-
planet system are still complementary to the migration scenario.
They reconstruct a detailed disk structure after the gaseous
component has been dispersed and the planet migration has
slowed down or stopped. In particular, they reveal the dynamical
structure of less populated regions between ∼90 and 150 au.

We conclude that the HR8799 dynamical state cannot yet be
fully resolved. While our resonant model may explain the
astrometric observations, a longer time coverage is required to

determine the real orbits without any doubt. As we confirm in
this work, high-resolution images and observations of the
debris disks may introduce additional, though indirect, limits
on the HR8799 system architecture. Various factors may be
responsible for shaping the debris disks, like the presence of
undetected planets and their masses and orbits. Therefore,
interpretation of the SEDs and spatial disk imaging seems to be
a complex and difficult problem, as the debris disk models may
be nonunique. Our results and follow-up dynamical simulations
similar to those made in our paper could be helpful to reduce
this indeterminacy.
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